bzoj 3277 串 后缀树+子树不同数个数
题目大意
给定\(n\)个字符串和\(k\)
对于每个字符串,输出它有多少个子串至少是\(k\)个字符串的子串(包括自己)
分析
建出广义后缀自动机
至少是\(k\)个字符串的子串就是求子树内不同数个数
考虑怎么统计答案
不要做本质不同子串做傻了
这题是问有多少个子串,子串相同位置不同是可以重复统计的
直接找字符串的每个后缀,它们前缀对应的子串开始位置都是不同的,不会算重
统计的就是每个后缀对应的节点 到跟路径上 有多少合法
dfs预处理一下树上前缀和就好
solution
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int M=200007;
inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
LL sum[M];
int n,m;
char s[M];
int last,tot;
int stp[M];
int ch[M][26];
int fa[M];
int que[M],ed[M];
int q[M],tq;
int dfn[M],sz[M],tdfn;
int pre[M][20],Mx,dep[M];
struct edge{int y,nxt;};
struct vec{
int g[M],te;
edge e[M];
vec(){memset(g,0,sizeof(g));te=0;}
void clear(){memset(g,0,sizeof(g));te=0;}
inline void push(int x,int y){e[++te].y=y;e[te].nxt=g[x];g[x]=te;}
inline int& operator () (int &x){return g[x];}
inline edge& operator [] (int &x){return e[x];}
}go;
int newnode(int ss){
stp[++tot]=ss;
return tot;
}
int ext(int p,int q,int d){
int nq=newnode(stp[p]+1);
fa[nq]=fa[q]; fa[q]=nq;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
for(;p&&ch[p][d]==q;p=fa[p]) ch[p][d]=nq;
return nq;
}
int sam(int p,int d){
int np=ch[p][d];
if(np) return (stp[p]+1==stp[np]) ? np : ext(p,np,d);
np=newnode(stp[p]+1);
for(;p&&!ch[p][d];p=fa[p]) ch[p][d]=np;
if(!p) fa[np]=1;
else{
int q=ch[p][d];
fa[np]= (stp[p]+1==stp[q]) ? q : ext(p,q,d);
}
return np;
}
int dfs(int x){
dfn[x]=++tdfn;
sz[x]=1;
int p,y;
for(p=go(x);p;p=go[p].nxt){
y=go[p].y;
dep[y]=dep[x]+1;
pre[y][0]=x;
dfs(y);
sz[x]+=sz[y];
}
}
bool cmp(int x,int y){
return dfn[x]<dfn[y];
}
int LCA(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
for(int t=Mx;t>=0;t--)
if(dep[pre[x][t]]>=dep[y]) x=pre[x][t];
if(x==y) return x;
for(int t=Mx;t>=0;t--)
if(pre[x][t]!=pre[y][t]) x=pre[x][t],y=pre[y][t];
return pre[x][0];
}
int c[M];
inline int lb(int x){return x&(-x);}
inline int add(int x,int d){
for(;x<=tdfn;x+=lb(x)) c[x]+=d;
}
inline int get(int x){
int res=0;
for(;x>0;x-=lb(x)) res+=c[x];
return res;
}
inline int get(int x,int y){
return get(y)-get(x-1);
}
void vtree(int l,int r){
int i,x,p,y;
tq=0;
for(i=l;i<=r;i++) q[++tq]=que[i];
sort(q+1,q+tq+1,cmp);
for(i=1;i<=tq;i++) add(dfn[q[i]],1);
for(i=2;i<=tq;i++) add(dfn[LCA(q[i],q[i-1])],-1);
}
void gao(int x){
int p,y;
for(p=go(x);p;p=go[p].nxt){
y=go[p].y;
if(get(dfn[y],dfn[y]+sz[y]-1)>=m) sum[y]=sum[x]+stp[y]-stp[x];
else sum[y]=sum[x];
gao(y);
}
}
int main(){
int i,j,p;
n=rd(),m=rd();
tot=1;
for(i=1;i<=n;i++){
scanf("%s",s+1);
last=1;
p=strlen(s+1);
for(j=p;j>0;j--){
last=sam(last,s[j]-'a');//***
que[++tq]=last;
}
ed[i]=tq;
}
for(i=2;i<=tot;i++) go.push(fa[i],i);
dfs(1);
Mx=log2(tot);
for(j=1;j<=Mx;j++)
for(i=1;i<=tot;i++) pre[i][j]=pre[pre[i][j-1]][j-1];
for(i=1;i<=n;i++) vtree(ed[i-1]+1,ed[i]);
gao(1);
for(i=1;i<=n;i++){
LL ans=0;
for(j=ed[i-1]+1;j<=ed[i];j++)
ans+=sum[que[j]];
printf("%lld\n",ans);
}
return 0;
}
bzoj 3277 串 后缀树+子树不同数个数的更多相关文章
- BZOJ 3277 串 & BZOJ 3473 字符串 (广义后缀自动机、时间复杂度分析、启发式合并、线段树合并、主席树)
标签那么长是因为做法太多了... 题目链接: (bzoj 3277) https://www.lydsy.com/JudgeOnline/problem.php?id=3277 (bzoj 3473) ...
- BZOJ 3277 串 (广义后缀自动机)
3277: 串 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 309 Solved: 118 [Submit][Status][Discuss] De ...
- BZOJ 3277: 串/ BZOJ 3473: 字符串 ( 后缀数组 + RMQ + 二分 )
CF原题(http://codeforces.com/blog/entry/4849, 204E), CF的解法是O(Nlog^2N)的..记某个字符串以第i位开头的字符串对答案的贡献f(i), 那么 ...
- HDU 5919 Sequence II(主席树+区间不同数个数+区间第k小)
http://acm.split.hdu.edu.cn/showproblem.php?pid=5919 题意:给出一串序列,每次给出区间,求出该区间内不同数的个数k和第一个数出现的位置(将这些位置组 ...
- bzoj 3277 串 && bzoj 3473 字符串 && bzoj 2780 [Spoj]8093 Sevenk Love Oimaster——广义后缀自动机
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3277 https://www.lydsy.com/JudgeOnline/problem.p ...
- bzoj 3277: 串 & bzoj 3473: 字符串【后缀自动机||后缀数组】
建一个广义后缀自动机(每加完一个串都返回root),在parent树上dpsum记录合法长度,打着时间戳往上跳,最后每个串在自动机上跑一变统计答案即可. 后缀数组理解起来可能方便一点,但是难写,就只说 ...
- bzoj 3277: 串
Description 字符串是oi界常考的问题.现在给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中 至少k个字符串的子串(注意包括本身). Solution 出现 \(k ...
- SPOJ DQUERY D-query(主席树 区间不同数个数)
题意:问你区间有几个不同的数 思路:主席树nb.我们知道主席树每一个root都存着一棵权值线段树,现在我们在每个root中存位置,也就是01表示这个位置存不存在.然后我们用一个fa[a[i]]表示a[ ...
- 从Trie树(字典树)谈到后缀树
转:http://blog.csdn.net/v_july_v/article/details/6897097 引言 常关注本blog的读者朋友想必看过此篇文章:从B树.B+树.B*树谈到R 树,这次 ...
随机推荐
- Oracle 数据库、实例、表空间、用户、数据库对象
Oracle是一种数据库管理系统,是一种关系型的数据库管理系统.通常情况了我们称的“数据库”,包含了物理数据.数据库管理系统.内存.操作系统进程的组合体,就是指这里所说的数据库管理系统. 完整的Ora ...
- 关于小程序 scroll-view中设置scroll-top无效 和小说图书阅读进度条小案例
在最近的项目有做到关于小说阅读的进度条功能,其中用到scroll-view和slider组件,发现scroll-view中的scroll-top在设置值后无效,出现这种情况大概是以下几种问题: 1.s ...
- Python 一行代码输出心形图案
Python3 >>> print('\n'.join([''.join([('Love'[(x-y)%4]if((x*0.05)**2+(y*0.1)**2-1)**3-(x*0. ...
- inotifywait实时监控文件目录
一.inotify简介 inotify 是一种强大的.细粒度的.异步文件系统监控机制,它满足各种各样的文件监控需要,可以监控文件系统的访问属性.读写属性.权限属性.创建删除.移动等操作,也可以监控文件 ...
- 树莓派下ubuntu-mate中ssh服务的安装与开机后自启动
ssh程序分为客户端程序openssh-client和服务端程序openssh-server. 如果需要ssh登陆到别的电脑,需要安装openssh-client,该程序ubuntu是默认安装的.而如 ...
- 笔记-编程-IO模型
笔记-编程-IO模型 1. 简介 常用IO模型 1) 同步阻塞IO(Blocking IO) 2) 同步非阻塞IO(Non-blocking IO) 3) IO ...
- 菜鸟学Linux - Linux文件属性
在Linux中,文件的属性是一个很重要的概念,用户或者用户组对一个文件所拥有的权限,都可以从文件的属性得知. 我们可以通过ls -al命令,列出某个文件夹下面的所有文件(包括以.开头的隐藏文件).下面 ...
- ElasticSearch学习笔记(一)-- 查询索引分词
# 查看所有索引 GET _cat/indices # 创建一个索引 PUT /test_index # 插入一条数据(指定id)PUT /test_index/doc/ { "userna ...
- leetcode 【 Reorder List 】python 实现
题目: Given a singly linked list L: L0→L1→…→Ln-1→Ln,reorder it to: L0→Ln→L1→Ln-1→L2→Ln-2→… You must do ...
- 【Gas Station】cpp
题目: There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. ...