BZOJ_2813_奇妙的Fibonacci_线性筛
BZOJ_2813_奇妙的Fibonacci_线性筛
Description
Input
第一行一个整数Q,表示Q个询问。
第二行四个整数:Q1, A, B, C
第i个询问Qi = (Qi-1 * A + B) mod C + 1(当i >= 2)
Output
Ai代表第i个询问有多少个Fj能够整除FQi。
Bi代表第i个询问所有j的平方之和。
输出包括两行:
第一行是所有的Ai之和。
第二行是所有的Bi之和。
由于答案过大,只需要输出除以1000000007得到的余数即可。
Sample Input
2 2 1 8
Sample Output
55
HINT
对于100%的数据保证:Q <= 3*10^6,C <= 10^7,A <= 10^7,B <= 10^7,1 <= Q1<= C
结论:(fn,fm)=f(n,m)
证明直接上图片:

然后好办了。
fj|fi
(fi,fj)=fj
f(i,j)=fj
(i,j)=j 或 (i,j)=1且j=2。
线筛约数的平方之和,后面那个特判即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long ll;
#define mod 1000000007
#define N 10000050
#define M 10000000
int prime[N],cnt,cs[N],ys[N];
ll pf[N];
bool vis[N];
void init() {
ll i,j; ys[1]=pf[1]=1;
for(i=2;i<=M;i++) {
if(!vis[i]) {
prime[++cnt]=i,cs[i]=i,ys[i]=2,pf[i]=(ll(i)*i+1)%mod;
for(j=i*i;j<=M;j*=i) {
ys[j]=ys[j/i]+1;
pf[j]=(pf[j/i]+j*j)%mod;
}
}
for(j=1;j<=cnt&&i*prime[j]<=M;j++) {
int y=i*prime[j];
vis[y]=1;
if(i%prime[j]==0) {
cs[y]=cs[i]*prime[j];
if(i!=cs[i]) {
pf[y]=pf[i/cs[i]]*pf[prime[j]*cs[i]]%mod;
ys[y]=ys[i/cs[i]]*ys[prime[j]*cs[i]];
}
break;
}
cs[y]=prime[j];
pf[y]=pf[i]*pf[prime[j]]%mod;
ys[y]=ys[i]*ys[prime[j]];
}
}
}
int main() {
init();
ll Q,A,B,C;
int n;
ll ans1=0,ans2=0;
scanf("%d%lld%lld%lld%lld",&n,&Q,&A,&B,&C);
A%=C; B%=C;
while(n--) {
// printf("%d %lld\n",ys[Q],pf[Q]);
ans1+=ys[Q]+(Q&1); if(ans1>=mod) ans1-=mod;
ans2+=pf[Q]+(Q&1)*4; if(ans2>=mod) ans2-=mod;
Q=(Q*A+B)%C+1;
}
printf("%lld\n%lld\n",ans1,ans2);
}
BZOJ_2813_奇妙的Fibonacci_线性筛的更多相关文章
- 【bzoj2813】 奇妙的Fibonacci数列 线性筛
Description Fibonacci数列是这样一个数列: F1 = 1, F2 = 1, F3 = 2 . . . Fi = Fi-1 + Fi-2 (当 i >= 3) pty忽然对这个 ...
- bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 726 Solved: 309[Submit][Status ...
- 洛谷P3383 【模板】线性筛素数
P3383 [模板]线性筛素数 256通过 579提交 题目提供者HansBug 标签 难度普及- 提交 讨论 题解 最新讨论 Too many or Too few lines 样例解释有问题 ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
随机推荐
- HDOJ Oulipo 1686【KMP】
Oulipo Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- HTML元素定位
一切皆为框 div.h1 或 p 元素常常被称为块级元素(block element).这意味着这些元素显示为一块内容,即"块框".与之相反,span 和 strong 等元素称为 ...
- Synchronized修饰静态变量和普通变量的区别
这里主要涉及到类对象(static方法),对象方法(非static方法) 我们知道,当synchronized修饰一个static方法时,多线程下,获取的是类锁(即Class本身,注意:不是实例): ...
- erlang动态生成随机key
取随机数,举个例子: 获取动态随机key值16位(key的范围是由"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ012345678 ...
- PowerBuilder -- 保存图片
String ls_path, ls_file_name, ls_filter, ls_errInt li_ret, li_loop, li_i, li_file, li_bytesLong ll_f ...
- U盘中毒变成exe快捷键文件不见问题
大家好,大家能够叫我阿胜,今天给我大家带一个有用小方法,希望对大家有帮助.去学校打印社打印东西,U盘中病毒,使U盘文件所有变成快捷键了,这个坑爹的打印社.这时我该怎么办...... 嘿嘿.阿胜给 ...
- Swiftl优秀的特性
Swift语言在吸收诸多优秀语言如java.c++,Python之后.提供给开发人员大量优秀的特性. 以下我列举一下,swift一些优秀的特性: 1.函数使用经典的圆括号和点调用语法 2.函数标签特性 ...
- spring4 maven3 mybatis
1 新建maven工程 http://www.cnblogs.com/quanyongan/archive/2013/04/21/3033838.html 如果在第三步中出现错误,比如类似: Coul ...
- access变转换为mysql表工具
1.一个是国外软件,名字叫Access2MySQL,下载地址:http://www.pc6.com/softview/SoftView_7187.html 2.第二款软件是月光博客写的一个小软件:DB ...
- 下面哪个进制能表述 13*16=244是正确的?)[中国台湾某计算机硬件公司V2010年5月面试题]
A.5B.7C.9D.11解析:13如果是一个十进制的话,它可以用13=1*101+3*100来表示.现在我们不知道13是几进制,那我们姑且称其X进制.X进制下的13转化为十进制可以用13=1*X1+ ...