调半天原来是dsu写不熟

Description

The cows have once again tried to form a startup company, failing to remember from past experience t
hat cows make terrible managers!The cows, conveniently numbered 1…N1…N (1≤N≤100,000), organize t
he company as a tree, with cow 1 as the president (the root of the tree). Each cow except the presid
ent has a single manager (its "parent" in the tree). Each cow ii has a distinct proficiency rating, 
p(i), which describes how good she is at her job. If cow ii is an ancestor (e.g., a manager of a man
ager of a manager) of cow jj, then we say jj is a subordinate of ii.
 
Unfortunately, the cows find that it is often the case that a manager has less proficiency than seve
ral of her subordinates, in which case the manager should consider promoting some of her subordinate
s. Your task is to help the cows figure out when this is happening. For each cow ii in the company, 
please count the number of subordinates jj where p(j)>p(i).
n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根。
问对于每个奶牛来说,它的子树中有几个能力值比它大的。

Input

The first line of input contains N
The next N lines of input contain the proficiency ratings p(1)…p(N) 
for the cows. Each is a distinct integer in the range 1…1,000,000,000
The next N-1 lines describe the manager (parent) for cows 2…N 
Recall that cow 1 has no manager, being the president.
n,表示有几只奶牛 n<=100000
接下来n行为1-n号奶牛的能力值pi
接下来n-1行为2-n号奶牛的经理(树中的父亲)

Output

Please print N lines of output. The ith line of output should tell the number of 
subordinates of cow ii with higher proficiency than cow i.
共n行,每行输出奶牛i的下属中有几个能力值比i大

题目分析

做法一:dsu $O(n \log n)$

用dsu的思想来利用子树的大量重复信息,树状数组配合查询。

 #include<bits/stdc++.h>
const int maxn = ;
const int maxm = ; struct node
{
int fa,tot,son;
}a[maxn];
int n,p[maxn],f[maxn],cnt[maxn],ans[maxn];
int edgeTot,head[maxn],nxt[maxm],edges[maxm]; int read()
{
char ch = getchar();
int num = , fl = ;
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
void addedge(int u, int v)
{
edges[++edgeTot] = v, nxt[edgeTot] = head[u], head[u] = edgeTot;
}
void update(int x, int c)
{
for (; x<=cnt[]; x+=(x&-x)) f[x] += c;
}
int query(int x)
{
int ret = ;
for (; x; x-=(x&-x)) ret += f[x];
return ret;
}
void dfs1(int x, int fa)
{
a[x].fa = fa, a[x].tot = , a[x].son = -;
for (int i=head[x]; i!=-; i=nxt[i])
{
int v = edges[i];
if (v==fa) continue;
dfs1(v, x), a[x].tot += a[v].tot;
if (a[x].son==-||a[a[x].son].tot < a[v].tot) a[x].son = v;
}
}
void color(int x, int c, int del)
{
update(p[x], c);
for (int i=head[x]; i!=-; i=nxt[i])
if (edges[i]!=a[x].fa&&edges[i]!=del)
color(edges[i], c, );
}
void dfs2(int x, bool fl)
{
for (int i=head[x]; i!=-; i=nxt[i])
if (edges[i]!=a[x].fa&&edges[i]!=a[x].son)
dfs2(edges[i], );
if (a[x].son!=-) dfs2(a[x].son, );
color(x, , a[x].son);
ans[x] = query(p[x]-);
if (!fl) color(x, -, );
}
int main()
{
memset(head, -, sizeof head);
cnt[] = n = read();
for (int i=; i<=n; i++) p[i] = cnt[i] = read();
std::sort(cnt+, cnt+n+);
cnt[] = std::unique(cnt+, cnt+n+)-cnt-;
for (int i=; i<=n; i++)
p[i] = cnt[]+-(std::lower_bound(cnt+, cnt+cnt[]+, p[i])-cnt);
for (int i=; i<n; i++) addedge(read(), i+);
dfs1(, ), dfs2(, );
for (int i=; i<=n; i++) printf("%d\n",ans[i]);
return ;
}

做法二:线段树合并 $O(n \log n)$

暂时没写,好像常数比dsu小。

upd:写了一下发现常数(本题)确实比dsu小。

线段树合并的思想不难理解,就是仿照堆的合并思路处理,原理则是基于线段树结构相同。

在动态开点的前提下,时间空间复杂度都是$O(n\log n)$的。

 #include<bits/stdc++.h>
const int maxn = ;
const int maxm = ;
const int maxNode = ; struct node
{
int l,r,val;
}a[maxNode];
int n,tot;
int rt[maxn],p[maxn],cnt[maxn],ans[maxn];
int edgeTot,head[maxn],nxt[maxm],edges[maxm]; int read()
{
char ch = getchar();
int num = , fl = ;
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
void addedge(int u, int v)
{
edges[++edgeTot] = v, nxt[edgeTot] = head[u], head[u] = edgeTot;
}
void write(int x){if (x/) write(x/);putchar(''+x%);}
void merge(int &u, int v)
{
if (!v) return;
if (!u) u = v;
else{
a[u].val += a[v].val;
merge(a[u].l, a[v].l);
merge(a[u].r, a[v].r);
}
}
int query(int rt, int l, int r, int c)
{
if (!rt) return ;
if (r <= c) return a[rt].val;
int mid = (l+r)>>, ret = query(a[rt].l, l, mid, c);
if (mid < c) ret += query(a[rt].r, mid+, r, c);
return ret;
}
void update(int &rt, int l, int r, int c)
{
if (!rt) rt = ++tot;
++a[rt].val;
if (l==r) return;
int mid = (l+r)>>;
if (c <= mid) update(a[rt].l, l, mid, c);
else update(a[rt].r, mid+, r, c);
}
void dfs(int x)
{
for (int i=head[x]; i!=-; i=nxt[i])
{
int v = edges[i];
dfs(v), merge(rt[x], rt[v]);
}
ans[x] = query(rt[x], , cnt[], p[x]);
update(rt[x], , cnt[], p[x]);
}
int main()
{
memset(head, -, sizeof head);
n = read();
for (int i=; i<=n; i++) p[i] = cnt[i] = read();
for (int i=; i<n; i++) addedge(read(), i+);
std::sort(cnt+, cnt+n+);
cnt[] = std::unique(cnt+, cnt+n+)-cnt-;
for (int i=; i<=n; i++)
p[i] = cnt[]+-(std::lower_bound(cnt+, cnt+cnt[]+, p[i])-cnt);
dfs();
for (int i=; i<=n; i++) write(ans[i]), putchar('\n');
return ;
}

END

【dsu || 线段树合并】bzoj4756: [Usaco2017 Jan]Promotion Counting的更多相关文章

  1. [BZOJ4756][Usaco2017 Jan]Promotion Counting 树状数组

    4756: [Usaco2017 Jan]Promotion Counting Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 305  Solved: ...

  2. BZOJ4756: [Usaco2017 Jan]Promotion Counting(线段树合并)

    题意 题目链接 Sol 线段树合并板子题 #include<bits/stdc++.h> using namespace std; const int MAXN = 400000, SS ...

  3. [BZOJ4756] [Usaco2017 Jan]Promotion Counting(线段树合并)

    传送门 此题很有意思,有多种解法 1.用天天爱跑步的方法,进入子树的时候ans-query,出去子树的时候ans+query,query可以用树状数组或线段树来搞 2.按dfs序建立主席树 3.线段树 ...

  4. bzoj4756 [Usaco2017 Jan]Promotion Counting

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4756 [题解] dsu on tree,树状数组直接上 O(nlog^2n) # inclu ...

  5. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  6. BZOJ[Usaco2017 Jan]Promotion Counting——线段树合并

    题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...

  7. 2018.08.27 [Usaco2017 Jan]Promotion Counting(线段树合并)

    描述 The cows have once again tried to form a startup company, failing to remember from past experienc ...

  8. bzoj 4756 [Usaco2017 Jan]Promotion Counting——线段树合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 线段树合并裸题.那种返回 int 的与传引用的 merge 都能过.不知别的题是不是这 ...

  9. 【bzoj 4756】[Usaco2017 Jan] Promotion Counting

    Description The cows have once again tried to form a startup company, failing to remember from past ...

随机推荐

  1. iphone6 iphone6 plus 放大显示模式高分辨率模式问题

    分为兼容模式和高分辨率模式. 兼容模式 当你的 app 没有提供 3x 的 LaunchImage 时,系统默认进入兼容模式,大屏幕一切按照 320 宽度渲染,屏幕宽度返回 320:然后等比例拉伸到大 ...

  2. 关于 Overtrue 的拼音库 overtrue/pinyin 为何 travis 为 error

    什么是ThinkSNS ? ThinkSNS(简称TS),一款全平台综合性社交系统,为国内外大中小企业和创业者提供社会化软件研发及技术解决方案,目前最新版本为ThinkSNS+(简称TS+).Thin ...

  3. PJzhang:web漏洞扫描工具sitadel

    猫宁!!! 参考链接:https://www.freebuf.com/sectool/194769.html 转变博客的写作思路,力求精简快捷,不浪费自己或者他人的时间. sitadel是一款精简的w ...

  4. [Android]XML和JSON的区别

    1.定义介绍 (1).XML定义 扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据.定义数据类型,是一种允 ...

  5. TDH-常见运维指令

    1.查看cpu: cat /proc/cpuinfo | grep processor2.查看磁盘:df -h (查看磁盘使用率) df -i (查看iNode使用) fdisk -l (查看磁盘整体 ...

  6. Python 踩坑之旅进程篇其四一次性踩透 uid euid suid gid egid sgid的坑坑洼洼

    目录 1.1 踩坑案例 1.2 填坑解法 1.3 坑位分析 1.4 技术关键字 1.5 坑后思考 下期坑位预告 代码示例支持 平台: Centos 6.3 Python: 2.7.14 代码示例: 菜 ...

  7. c# 基础字符串

    ToLower():得到字符串的小写形式.注意字符串是不可变的,所以这些函数都不会直接改变字符串的内容,而是把修改后的字符串的值通过函数返回值的形式返回.s.ToLower()与s=s.ToLower ...

  8. codevs 4888 零件分组

    4888 零件分组  时间限制: 1 s  空间限制: 16000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 现有一些棍状零件,每个零件都有 ...

  9. Python+Selenium与Chrome如何进行完美结合

    zhuan:http://blog.51cto.com/starpoint/2102975?cid=704621 使用WebDriver在Chrome浏览器上进行测试时,需要从http://chrom ...

  10. 【虚拟机-网关】如何在使用应用程序网关和 Nginx 的环境下实现强制 HTTPS 跳转

    背景介绍 大家在使用 Nginx 部署网站时,实现 HTTP 到 HTTPS 的强制跳转是非常容易的事情,一般可以使用rewrite 命令或者使用返回自定义 301 页面的方法对 HTTP 请求进行 ...