poj The Settlers of Catan( 求图中的最长路 小数据量 暴力dfs搜索(递归回溯))
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 1123 | Accepted: 732 |
Description
You are employed by a software company that just has decided to
develop a computer version of this game, and you are chosen to implement
one of the game's special rules:
When the game ends, the player who built the longest road gains two extra victory points.
The problem here is that the players usually build complex road
networks and not just one linear path. Therefore, determining the
longest road is not trivial (although human players usually see it
immediately).
Compared to the original game, we will solve a simplified problem
here: You are given a set of nodes (cities) and a set of edges (road
segments) of length 1 connecting the nodes.
The longest road is defined as the longest path within the network
that doesn't use an edge twice. Nodes may be visited more than once,
though.
Example: The following network contains a road of length 12.
o o--o o
\ / \ /
o--o o--o
/ \ / \
o o--o o--o
\ /
o--o
Input
The first line of each test case contains two integers: the number
of nodes n (2<=n<=25) and the number of edges m (1<=m<=25).
The next m lines describe the m edges. Each edge is given by the numbers
of the two nodes connected by it. Nodes are numbered from 0 to n-1.
Edges are undirected. Nodes have degrees of three or less. The network
is not neccessarily connected.
Input will be terminated by two values of 0 for n and m.
Output
Sample Input
3 2
0 1
1 2
15 16
0 2
1 2
2 3
3 4
3 5
4 6
5 7
6 8
7 8
7 9
8 10
9 11
10 12
11 12
10 13
12 14
0 0
Sample Output
2
12
代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm> using namespace std; int map[30][30];
bool vis[30][30];
int n, m;
int MAX; void dfs(int dd, int num )
{
for(int i=0; i<n; i++)
{
if(map[dd][i]==1 && vis[dd][i]==0 )
{
vis[dd][i]=1; vis[i][dd]=1;
dfs(i, num+1);
vis[dd][i]=0; vis[i][dd]=0;
}
}
if(num>MAX) MAX=num;
} int main()
{
int i, j;
int u, v;
while(scanf("%d %d", &n, &m)!=EOF)
{
if(n==0 && m==0 )break;
memset(map, 0, sizeof(map )); for(i=0; i<m; i++)
{
scanf("%d %d", &u, &v);
map[u][v]=1; map[v][u]=1;
}
MAX=-1;
int cnt;
for(i=0; i<n; i++)
{
cnt=0;
memset(vis, false, sizeof(vis));
dfs(i, 0);
//if(cnt>MAX) MAX=cnt;
}
printf("%d\n", MAX );
}
return 0;
}
poj The Settlers of Catan( 求图中的最长路 小数据量 暴力dfs搜索(递归回溯))的更多相关文章
- Floyd-Warshall求图中任意两点的最短路径
原创 除了DFS和BFS求图中最短路径的方法,算法Floyd-Warshall也可以求图中任意两点的最短路径. 从图中任取两点A.B,A到B的最短路径无非只有两种情况: 1:A直接到B这条路径即是最短 ...
- HDU 3249 Test for job (有向无环图上的最长路,DP)
解题思路: 求有向无环图上的最长路.简单的动态规划 #include <iostream> #include <cstring> #include <cstdlib ...
- hdu 5952 Counting Cliques 求图中指定大小的团的个数 暴搜
题目链接 题意 给定一个\(n个点,m条边\)的无向图,找出其中大小为\(s\)的完全图个数\((n\leq 100,m\leq 1000,s\leq 10)\). 思路 暴搜. 搜索的时候判断要加进 ...
- POJ 3660 Cow Contest(求图的传递性)
题意: 给定n头牛, 然后有m个比较, 求出有多少头牛能确定自己的排名. 分析: 假设有一头牛a, 有ki头牛强于自己, kj头牛弱于自己, ki + kj == n-1时, 那么这头牛的排名就确定了 ...
- hdu4587 Two Nodes 求图中删除两个结点剩余的连通分量的数量
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 题目给了12000ms,对于tarjan这种O(|V|+|E|)复杂度的算法来说,暴力是能狗住的 ...
- 编程之美 set 7 求数组中的最长递增子序列
解法 1. 假设在目标数组 array[] 的前 i 个元素中, 最长递增子序列的长度为 LIS[i] 那么状态转移方程为 LIS[i] = max(1, LIS[k]+1) array[i+1] & ...
- poj 1679 The Unique MST 【次小生成树+100的小数据量】
题目地址:http://poj.org/problem?id=1679 2 3 3 1 2 1 2 3 2 3 1 3 4 4 1 2 2 2 3 2 3 4 2 4 1 2 Sample Outpu ...
- splunk中mongodb作用——存用户相关数据如会话、搜索结果等
About the app key value store The app key value store (or KV store) provides a way to save and retri ...
- SpringBoot中Post请求提交富文本数据量过大参数无法获取的问题
yml增加配置 # 开发环境配置 server: tomcat: max-http-form-post-size: -1
随机推荐
- 2016.7.12 在navicat中用sql语句建表
参考资料: http://jingyan.baidu.com/article/f0e83a25a8c4b022e5910116.html 即新建query,然后run. (1)点击要新建表的位置,选择 ...
- Linux 正则表达式 vi, grep, sed, awk
1. vi 表示内容的元字符 模式 含义 . 匹配任意字符 [abc] 匹配方括号中的任意一个字符.可以使用-表示字符范围,如[a-z0-9]匹配小写字母和阿拉伯数字. [^abc] 在方 ...
- 第一个Swift程序Hello World
import Foundation print("Hello, World!") print("I am here!") var arr=["项羽&q ...
- 【TSQL】空格的比较
空格比较时 空字符串跟任意长度的半角空格字符串比较,结果都为TRUE ) SET @TRUSTOR = '' IF @TRUSTOR IS NULL BEGIN SELECT 'IS NULL' EN ...
- HTTP头解读
Http协议定义了很多与服务器交互的方法,最基本的有4种,分别是GET.POST.PUT.DELETE.一个URL地址用于描述一个网络上的资源, 而HTTP中的GET.POST.PUT. DELETE ...
- Apache2.4 新virtualhost
创建配置文件 /etc/apache2/sites-available# sudo nano mysite.conf <VirtualHost *:> #ServerName hello. ...
- 网络通信数据处理 Xbytestring类
PS_Xbytestring a byte string for store low level data type 文件夹[TOC] PS_Xbytestring 文件夹TOC base info ...
- 触发器 (Delete Update)
--delete触发器IF(EXISTS(SELECT * FROM sysobjects WHERE name='T_PlanQtyDelete'))DROP TRIGGER T_PlanQtyDe ...
- WebRTC for android ios开发官方指南
The WebRTC native code package can be found at: https://chromium.googlesource.com/external/webrtc ht ...
- Spring cloud微服务实战——基于OAUTH2.0统一认证授权的微服务基础架构
https://blog.csdn.net/w1054993544/article/details/78932614