题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2935

考察欧拉回路性质的题目呢;

TJ:https://blog.csdn.net/u014609452/article/details/53705451

首先按照题目给出的点对连边,发现能一连串输出的数组成一条路径;

那么答案就是图的最小路径覆盖的点数,可以考虑欧拉回路;

连通块之间分别考虑,如果连通块存在欧拉回路,那么覆盖它需要边数+1的点;

如果不存在欧拉回路,那么加上 度数绝对值和/2 条边构成欧拉回路,然后再任意删去一条,形成欧拉路,答案就是边数;

找连通块用并查集即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int const maxn=;
int n=,m,k,sum,ans,fa[maxn],deg[maxn];
bool vis[maxn],tag[maxn];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
scanf("%d",&m);
for(int i=;i<=n;i++)fa[i]=i;
for(int i=,x,y;i<=m;i++)
{
scanf("%d%d",&x,&y);
deg[x]++; deg[y]--; vis[x]=; vis[y]=;
fa[find(x)]=find(y);
}
for(int i=;i<=n;i++)
if(vis[i]&&deg[i])tag[find(i)]=,sum+=(deg[i]>)?deg[i]:-deg[i];
for(int i=;i<=n;i++)
if(vis[i]&&find(i)==i&&!tag[i])k++;//此连通块没有度数非0的点,也就是存在欧拉回路,+1
ans=k+sum/+m;
printf("%d",ans);
return ;
}

bzoj2935 [Poi1999]原始生物——欧拉回路的更多相关文章

  1. BZOJ2935: [Poi1999]原始生物(欧拉回路)

    2935: [Poi1999]原始生物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 150  Solved: 71[Submit][Status][D ...

  2. bzoj 2935 [Poi1999]原始生物——欧拉回路思路!

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2935 有向图用最小的路径(==总点数最少)覆盖所有边. 完了完了我居然连1999年的题都做不 ...

  3. 【bzoj2935】[Poi1999]原始生物

    2935: [Poi1999]原始生物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 145  Solved: 71[Submit][Status][D ...

  4. 【刷题】BZOJ 2935 [Poi1999]原始生物

    Description 原始生物的遗传密码是一个自然数的序列K=(a1,...,an).原始生物的特征是指在遗传密码中连续出现的数对(l,r),即存在自然数i使得l=ai且r=ai+1.在原始生物的遗 ...

  5. BZOJ 2935/ Poi 1999 原始生物

    [bzoj2935][Poi1999]原始生物   2935: [Poi1999]原始生物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 145  So ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. [POI1999][LOJ10112]原始生物

    典型的有向图K笔画的问题 最后答案就是n+1-1+k 1笔画有一点入度比出度少1 k笔画则统计入度比出度少的点中所有少的总和 #include<bits/stdc++.h> using n ...

  8. ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)

    //网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...

  9. [poj2337]求字典序最小欧拉回路

    注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...

随机推荐

  1. html5——拖拽

    基本情况 在HTML5的规范中,我们可以通过为元素增加draggable="true"来设置此元素是否可以进行拖拽操作,其中图片.链接默认是开启的. 拖拽元素 页面中设置了drag ...

  2. 如何解决Win10预览版一闪而过的disksnapshot.exe进程?

    Win10之家讯上周微软如约向Insider用户推送了Win10预览版10576更新,本次更新修复了之前版本中存在的一些问题,从日常使用的情况来看,对比之前的预览版系统要更稳定了一些,但是还是存在一些 ...

  3. 扩增子图表解读8网络图:节点OTU或类Venn比较

    网络图 Network 网络图虽然给人高大上的感觉,但是由于信息太多,无法给读者提供读有效的可读信息或是读者不知道该理解什么,总是让人望尔却步.那是因为大家太不了解网络,自己读不懂网络想表达的意思及其 ...

  4. Requests库 更新中

    1.获取网页内容 --- requests库 <需理解HTTP协议> >requests库的7个主要方法   方法 说明 requests.requests() 构造一个请求,支撑一 ...

  5. Problem 28

    Problem 28 https://projecteuler.net/problem=28 Starting with the number 1 and moving to the right in ...

  6. Linux - redis发布|订阅

    目录 Linux - redis发布|订阅 发布|订阅 基本命令 发布和订阅实例 正则方式订阅一个或者多个符合模式的频道 Linux - redis发布|订阅 发布: publish 订阅: subs ...

  7. BZOJ 4032 Luogu P4112 [HEOI2015]最短不公共子串 (DP、后缀自动机)

    这其实是道水题... 题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4032 (luogu)https://www.luog ...

  8. 关于单CPU,多CPU上的原子操作

    所谓原子操作,就是"不可中断的一个或一系列操作" . 硬件级的原子操作:在单处理器系统(UniProcessor)中,能够在单条指令中完成的操作都可以认为是" 原子操作& ...

  9. CODEVS3147 矩阵乘法2

    ...怎么优化都是90分,最后一个点一直T掉,有谁过了请告诉我. Program CODEVS3147; ; ..maxn,-..maxn] of longint; n,q,i,j,k,k1,k2,k ...

  10. [bzoj1047][HAOI2007]理想的正方形_动态规划_单调队列

    理想的正方形 bzoj-1047 HAOI-2007 题目大意:有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 注释:$2\le a, ...