题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2935

考察欧拉回路性质的题目呢;

TJ:https://blog.csdn.net/u014609452/article/details/53705451

首先按照题目给出的点对连边,发现能一连串输出的数组成一条路径;

那么答案就是图的最小路径覆盖的点数,可以考虑欧拉回路;

连通块之间分别考虑,如果连通块存在欧拉回路,那么覆盖它需要边数+1的点;

如果不存在欧拉回路,那么加上 度数绝对值和/2 条边构成欧拉回路,然后再任意删去一条,形成欧拉路,答案就是边数;

找连通块用并查集即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int const maxn=;
int n=,m,k,sum,ans,fa[maxn],deg[maxn];
bool vis[maxn],tag[maxn];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
scanf("%d",&m);
for(int i=;i<=n;i++)fa[i]=i;
for(int i=,x,y;i<=m;i++)
{
scanf("%d%d",&x,&y);
deg[x]++; deg[y]--; vis[x]=; vis[y]=;
fa[find(x)]=find(y);
}
for(int i=;i<=n;i++)
if(vis[i]&&deg[i])tag[find(i)]=,sum+=(deg[i]>)?deg[i]:-deg[i];
for(int i=;i<=n;i++)
if(vis[i]&&find(i)==i&&!tag[i])k++;//此连通块没有度数非0的点,也就是存在欧拉回路,+1
ans=k+sum/+m;
printf("%d",ans);
return ;
}

bzoj2935 [Poi1999]原始生物——欧拉回路的更多相关文章

  1. BZOJ2935: [Poi1999]原始生物(欧拉回路)

    2935: [Poi1999]原始生物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 150  Solved: 71[Submit][Status][D ...

  2. bzoj 2935 [Poi1999]原始生物——欧拉回路思路!

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2935 有向图用最小的路径(==总点数最少)覆盖所有边. 完了完了我居然连1999年的题都做不 ...

  3. 【bzoj2935】[Poi1999]原始生物

    2935: [Poi1999]原始生物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 145  Solved: 71[Submit][Status][D ...

  4. 【刷题】BZOJ 2935 [Poi1999]原始生物

    Description 原始生物的遗传密码是一个自然数的序列K=(a1,...,an).原始生物的特征是指在遗传密码中连续出现的数对(l,r),即存在自然数i使得l=ai且r=ai+1.在原始生物的遗 ...

  5. BZOJ 2935/ Poi 1999 原始生物

    [bzoj2935][Poi1999]原始生物   2935: [Poi1999]原始生物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 145  So ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. [POI1999][LOJ10112]原始生物

    典型的有向图K笔画的问题 最后答案就是n+1-1+k 1笔画有一点入度比出度少1 k笔画则统计入度比出度少的点中所有少的总和 #include<bits/stdc++.h> using n ...

  8. ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)

    //网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...

  9. [poj2337]求字典序最小欧拉回路

    注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...

随机推荐

  1. windows server2003 多用户登陆问题解决办法

    windows server2003 多用户登陆问题解决办法 Windows Server远程登陆默认情况下只允许同时有两个用户登陆,超过两个用户会提示"超出最大连接数". 要解决 ...

  2. 11-c++虚拟函数

    虚拟函数 #include "stdio.h" class A{ public: void print() { printf("%s","this i ...

  3. ajax异步请求详解

    1.XMLHttpRequst的出现才有了异步处理 2.创建XmlHttpRequest对象 var request=new XMLHttpRequest(); 注意:如果要兼容IE6以下浏览器则需要 ...

  4. HTML5轻松实现全屏视频背景

    想在你的网页首页中全屏播放一段视频吗?而这段视频是作为网页的背景,不影响网页内容的正常浏览.那么我告诉你有一款Javascript库正合你意,它就是Bideo.js. 参考网址: https://ww ...

  5. [工具]iostat

    本文主要分析了Linux的iostat命令的源码 iostat源码共563行,应该算是Linux系统命令代码比较少的了.源代码中主要涉及到如下几个Linux的内核文件: 1./proc/disksta ...

  6. P2386 放苹果

    题目背景 (poj1664) 题目描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分发(5,1,1和1,1,5是同一种方法) 输入输出格式 输入格式: 第一行是测试 ...

  7. (C/C++学习)13.C语言字符串处理函数(一)

    说明:字符串处理的函数很多,本文将例举经常遇到的一些函数加以说明. 一.字符串的输入输出 头文件:<stdio.h> 1.利用标准输出函数 printf() 来输出,将格式设置为 s% . ...

  8. 关于linux内核用纯c语言编写的思考

    在阅读linux2.6 版本内核的虚拟文件系统和驱动子系统的时候,我发现内核纯用c语言编写其实也是有一点不方便,特别是内核中大量存在了对象的概念,比如说文件对象,描述起来使用对象描述,但是对象在c语言 ...

  9. [pytorch学习]1.pytorch ubuntu安装

    看完了Deep Learning with Python,尝试了部分Keras的demo代码. 感觉Keras虽然容易上手,能够快速搭建出一个通用的模型,但是缺乏对底层的控制. 同时,在使用了自己编译 ...

  10. JS练习:商品的左右选择

    代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title ...