题意:

给定n,AA

以下n个数m1,m2···mn

则有n条方程

res % m1 = m1-AA

res % m2 = m2-AA

问res的最小值

直接上剩余定理,嘿嘿

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<set>
#include<queue>
#include<vector>
using namespace std;
#define ll __int64
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
//求一组解(x,y)使得 ax+by = gcd(a,b), 且|x|+|y|最小(注意求出的 x,y 可能为0或负数)。 //以下代码中d = gcd(a,b)
//能够扩展成求等式 ax+by = c,但c必须是d的倍数才有解,即 (c%gcd(a,b))==0
void extend_gcd (ll a , ll b , ll& d, ll &x , ll &y) {
if(!b){d = a; x = 1; y = 0;}
else {extend_gcd(b, a%b, d, y, x); y-=x*(a/b);}
}
ll work(ll l, ll r, ll *m, ll *a){
ll lcm = 1;
for(ll i = l; i <= r; i++)lcm = lcm/gcd(lcm,m[i])*m[i];
for(ll i = l+1; i <= r; i++) {
ll A = m[l], B = m[i], d, k1, k2, c = a[i]-a[l];
extend_gcd(A,B,d,k1,k2);
if(c%d)return -1;
ll mod = m[i]/d;
ll K = ((k1*c/d)%mod+mod)%mod;
a[l] = m[l]*K + a[l];
m[l] = m[l]*m[i]/d;
}
if(a[l]==0)return lcm;
return a[l];
}
#define N 100
ll a[N], m[N], n, AA;;
int main(){
ll i;
while(cin>>n>>AA,n){
for(i=1;i<=n;i++)cin>>m[i];
for(i=1;i<=n;i++)a[i] = m[i]-AA;
cout<<work(1,n,m,a)<<endl;
}
return 0;
}

HDU 1788 Chinese remainder theorem again 中国剩余定理的更多相关文章

  1. DHU 1788 Chinese remainder theorem again 中国剩余定理

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  2. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  3. HDU 1788 Chinese remainder theorem again

    题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...

  4. HDU——1788 Chinese remainder theorem again

    再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...

  5. Chinese remainder theorem again(中国剩余定理)

    C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:% ...

  6. hdu 3579 Hello Kiki 不互质的中国剩余定理

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  7. 《孙子算经》之"物不知数"题:中国剩余定理

    1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m ...

  8. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

  9. [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...

随机推荐

  1. Jenkins上Git ssh登陆配置

    1. 首先登陆linux机器 2. 切换到jenkins用户 3. 生成ssh key  ssh-keygen -t rsa -C 'amysu@acxiom.com'   4. 将生成的ssh ke ...

  2. JQuery 使用.show()和.hide()做的可爱动画

    只是最基本的东西,没啥稀奇的,只是今天看jquery教程的时候偶然看到show()和hide()是可以写两个参数的, 第一个参数是元素隐藏/显示的速度(单位:毫秒),另一个是一个function类型. ...

  3. 获取XML里指定的节点内容信息

    HttpContent bw = new StringContent(StrXml, Encoding.UTF8, "application/Xml"); var Msg = aw ...

  4. OpenCv: 二维坐标的旋转方程

    1. 可以写成一个矩阵的形式,也可以写成向量的形式: b 为选转角度加pi/2 x1 = x cos(b) - ysin(b) ;  y1 = x sin(b) + y cos(b).

  5. 安卓代码迁移:ActionBarActivity: cannot be resolved to a type

    参考链接:http://stackoverflow.com/questions/18830736/actionbaractivity-cannot-be-resolved-to-a-type in e ...

  6. 函数式编程-将Monad(单子)融入Swift

    前言 近期又开始折腾起Haskell,掉进这个深坑恐怕很难再爬上来了.在不断深入了解Haskell的各种概念以及使用它们去解决实际问题的时候,我会试想着将这些概念移植到Swift中.函数式编程范式的很 ...

  7. js截取字符串测试

    function gget() { $.ajax({ type: "GET", url: "index", data: { U: '1234', P: '000 ...

  8. javascrip this指向问题深入理解

    在JavaScript中this变量是一个令人难以摸清的关键字,this可谓是非常强大,充分了解this的相关知识有助于我们在编写面向对象的JavaScript程序时能够游刃有余. 1. 一般用处 对 ...

  9. 洛谷P1443 马的遍历【BFS】

    题目描述 有一个n*m的棋盘(1<n,m<=400),在某个点上有一个马,要求你计算出马到达棋盘上任意一个点最少要走几步 输入输出格式 输入格式: 一行四个数据,棋盘的大小和马的坐标 输出 ...

  10. Centos 7.x 源码编译搭建Nginx

    环境: centos 7 防火墙关闭 Selinx关闭 Nginx Web安装 安装依赖库 yum install pcre-devel pcre gcc gcc-c++ zlib zlib-deve ...