https://www.luogu.org/problem/show?pid=1043

题目描述

丁丁最近沉迷于一个数字游戏之中。这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易。游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分为m个部分,各部分内的数字相加,相加所得的m个结果对10取模后再相乘,最终得到一个数k。游戏的要求是使你所得的k最大或者最小。

例如,对于下面这圈数字(n=4,m=2):

要求最小值时,((2-1) mod 10)×((4+3) mod 10)=1×7=7,要求最大值时,为((2+4+3) mod 10)×(-1 mod 10)=9×9=81。特别值得注意的是,无论是负数还是正数,对10取模的结果均为非负值。

丁丁请你编写程序帮他赢得这个游戏。

输入输出格式

输入格式:

输入文件第一行有两个整数,n(1≤n≤50)和m(1≤m≤9)。以下n行每行有个整数,其绝对值不大于104,按顺序给出圈中的数字,首尾相接。

输出格式:

输出文件有两行,各包含一个非负整数。第一行是你程序得到的最小值,第二行是最大值。

输入输出样例

输入样例#1:

4 2
4
3
-1
2
输出样例#1:

7
81 环->破换成链。
f[i][j][k] 表示 在[i,j]区间内 化成 h个部分 的最值
求出前缀和 枚举h,左右端点以及断点-->>f[i][j][h]=(f[i][k-1][h-1]*(sum[j]-sum[k-1])
 #include <cstdio>

 #define INF (1e7)
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b) using namespace std; const int N();
int n,m,num[N],sum[N];
int f_min[N][N][],f_max[N][N][],maxn,minn=INF; int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",num+i),num[i+n]=num[i];
for(int i=;i<=(n<<);i++)
sum[i]+=sum[i-]+num[i];
for(int i=;i<=(n<<);i++)
for(int j=i;j<=(n<<);j++)
for(int k=;k<=m;k++)
{
if(k==)
{
f_min[i][j][k]=((f_min[i][j-][k]+num[j])%+)%;
f_max[i][j][k]=((f_max[i][j-][k]+num[j])%+)%;
}
else f_min[i][j][k]=INF;
}
for(int h=;h<=m;h++)
for(int i=;i<=(n<<);i++)
for(int j=h+i-;j<=(n<<);j++)
for(int k=h+i-;k<=j;k++)
{
f_min[i][j][h]=min(f_min[i][j][h],f_min[i][k-][h-]*(((sum[j]-sum[k-])%+)%));
f_max[i][j][h]=max(f_max[i][j][h],f_max[i][k-][h-]*(((sum[j]-sum[k-])%+)%));
}
for(int i=;i<=n;i++)
{
minn=min(minn,f_min[i][i+n-][m]);
maxn=max(maxn,f_max[i][i+n-][m]);
}
printf("%d\n%d\n",minn,maxn);
return ;
}

洛谷——P1043 数字游戏的更多相关文章

  1. 洛谷P1043 数字游戏

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  2. 洛谷 P1043 数字游戏 区间DP

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  3. 洛谷 P1043 数字游戏(区间dp)

    题目链接:https://www.luogu.com.cn/problem/P1043 这道题与石子合并很类似,都是把一个环强制改成一个链,然后在链上做区间dp 要初始化出1~2n的前缀和,方便在O( ...

  4. 洛谷P1043数字游戏

    题目 区间DP,将\(maxn[i][j][k]\)表示为i到j区间内分为k个区间所得到的最大值,\(minn\)表示最小值. 然后可以得到状态转移方程: \[maxn[i][j][k]= max(m ...

  5. 洛谷 P1043 数字游戏

    题目传送门 解题思路: 跟石子合并差不多,区间DP(环形),用f[i][j][s]表示从i到j分成s段所能获得的最大答案,枚举断点k,则f[i][j][s] = min(f[i][j][s],f[i] ...

  6. 洛谷 P5660 数字游戏 & [NOIP2019普及组]

    传送门 洛谷改域名了QAQ 解题思路 没什么好说的,一道红题,本不想发这篇博客 ,但还是尊重一下CCF吧QAQ,怎么说也是第一年CSP呢! 用getchar一个个读入.判断.累加,最后输出即可. 不过 ...

  7. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  8. 洛谷P1118 数字三角形游戏

    洛谷1118 数字三角形游戏 题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直 ...

  9. 洛谷P1553 数字翻转(升级版)

    题目链接 https://www.luogu.org/problemnew/show/P1553 题目描述 给定一个数,请将该数各个位上数字反转得到一个新数. 这次与NOIp2011普及组第一题不同的 ...

随机推荐

  1. CSS中的相关概念

    CSS的几个概念: 包括块:一个元素的"布局上下文".对于正常的HTML文本流中的一个元素,包括块由近期的块级祖先框.表单元格或行内块祖先框的内容边界(content edge)构 ...

  2. 编写SDR SDRAM页突发模式控制器的注意点-下篇

    本来是没打算写这些的,但是后面逐渐发现点问题,所以决定再写一个下篇来补充说明一下. 图一 细心的网友会发现上篇末尾的打印是有点问题的,因为我的数据产生器产生的是1-200,1-200,1-200,1- ...

  3. vue -- 7 个 有用的 Vue 开发技巧

    1 状态共享 随着组件的细化,就会遇到多组件状态共享的情况, Vuex当然可以解决这类问题,不过就像 Vuex官方文档所说的,如果应用不够大,为避免代码繁琐冗余,最好不要使用它,今天我们介绍的是 vu ...

  4. Codeforces 667C Reberland Linguistics 记忆化搜索

    链接 Codeforces 667C Reberland Linguistics 题意 给你一个字符串,除去前5个字符串后,使剩下的串有长度为2或3的词根组成,相邻的词根不能重复.找到所有的词根 思路 ...

  5. vue 学习笔记1 入门

    可以在 JSFiddle上在线学习vue 注意:所演示的示例,都是在JS中将Vue实例绑定至HTML中的指定元素,然后再通过Vue实例中data内的属性或者methods中的方法,来对所绑定元素的子元 ...

  6. js数组去重问题

    1. 双层循环:外层循环,内层比较值: (1)利用splice直接在原数组进行操作 Array.prototype.delRepeat = function (){ var arr = this; v ...

  7. 关联Anaconda和最新Pycharm2018.3.2

    在Anaconda和Pycharm 2018.3.2 x64都安装好之后,进行Anaconda 与Pycharm的关联操作 首先File -->New Project 打开以后切记要把Proje ...

  8. FastDFS学习总结(2)--Tracker与Storage配置详解

    1.Tracker基本配置 # is this config file disabled # false for enabled # true for disabled disabled=false ...

  9. 洛谷 P2386 放苹果

    P2386 放苹果 题目背景 (poj1664) 题目描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分发(5,1,1和1,1,5是同一种方法) 输入输出格式 输入 ...

  10. 10 hbase源码系列(十)HLog与日志恢复

    hbase源码系列(十)HLog与日志恢复   HLog概述 hbase在写入数据之前会先写入MemStore,成功了再写入HLog,当MemStore的数据丢失的时候,还可以用HLog的数据来进行恢 ...