opecv2 MeanShift 使用均值漂移算法查找物体
#if !defined OFINDER
#define OFINDER #include <opencv2\core\core.hpp>
#include <opencv2\imgproc\imgproc.hpp> class ContentFinder { private: float hranges[2];
const float* ranges[3];
int channels[3]; float threshold;
cv::MatND histogram;
cv::SparseMat shistogram;
bool isSparse; public: ContentFinder() : threshold(0.1f), isSparse(false) { ranges[0]= hranges; // all channels have the same range
ranges[1]= hranges;
ranges[2]= hranges;
} // Sets the threshold on histogram values [0,1]
void setThreshold(float t) { threshold= t;
} // Gets the threshold
float getThreshold() { return threshold;
} // Sets the reference histogram
void setHistogram(const cv::MatND& h) { isSparse= false;
histogram= h;
cv::normalize(histogram,histogram,1.0);
} // Sets the reference histogram
void setHistogram(const cv::SparseMat& h) { isSparse= true;
shistogram= h;
cv::normalize(shistogram,shistogram,1.0,cv::NORM_L2);
} cv::Mat find(const cv::Mat& image) { cv::Mat result; hranges[0]= 0.0; // range [0,255]
hranges[1]= 255.0;
channels[0]= 0; // the three channels
channels[1]= 1;
channels[2]= 2; if (isSparse) { // call the right function based on histogram type cv::calcBackProject(&image,
1, // one image
channels, // vector specifying what histogram dimensions belong to what image channels
shistogram, // the histogram we are using
result, // the resulting back projection image
ranges, // the range of values, for each dimension
255.0 // the scaling factor is chosen such that a histogram value of 1 maps to 255
); } else { cv::calcBackProject(&image,
1, // one image
channels, // vector specifying what histogram dimensions belong to what image channels
histogram, // the histogram we are using
result, // the resulting back projection image
ranges, // the range of values, for each dimension
255.0 // the scaling factor is chosen such that a histogram value of 1 maps to 255
);
} // Threshold back projection to obtain a binary image
if (threshold>0.0)
cv::threshold(result, result, 255*threshold, 255, cv::THRESH_BINARY); return result;
} cv::Mat find(const cv::Mat& image, float minValue, float maxValue, int *channels, int dim) { cv::Mat result; hranges[0]= minValue;
hranges[1]= maxValue; for (int i=0; i<dim; i++)
this->channels[i]= channels[i]; if (isSparse) { // call the right function based on histogram type cv::calcBackProject(&image,
1, // we only use one image at a time
channels, // vector specifying what histogram dimensions belong to what image channels
shistogram, // the histogram we are using
result, // the resulting back projection image
ranges, // the range of values, for each dimension
255.0 // the scaling factor is chosen such that a histogram value of 1 maps to 255
); } else { cv::calcBackProject(&image,
1, // we only use one image at a time
channels, // vector specifying what histogram dimensions belong to what image channels
histogram, // the histogram we are using
result, // the resulting back projection image
ranges, // the range of values, for each dimension
255.0 // the scaling factor is chosen such that a histogram value of 1 maps to 255
);
} // Threshold back projection to obtain a binary image
if (threshold>0.0)
cv::threshold(result, result, 255*threshold, 255, cv::THRESH_BINARY); return result;
} }; #endif #if !defined COLHISTOGRAM
#define COLHISTOGRAM #include <opencv2\core\core.hpp>
#include <opencv2\imgproc\imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
class ColorHistogram { private: int histSize[3];
float hranges[2];
const float* ranges[3];
int channels[3]; public: ColorHistogram() { // Prepare arguments for a color histogram
histSize[0]= histSize[1]= histSize[2]= 256;
hranges[0]= 0.0; // BRG range
hranges[1]= 255.0;
ranges[0]= hranges; // all channels have the same range
ranges[1]= hranges;
ranges[2]= hranges;
channels[0]= 0; // the three channels
channels[1]= 1;
channels[2]= 2;
} // Computes the histogram.
cv::MatND getHistogram(const cv::Mat &image) { cv::MatND hist; // BGR color histogram
hranges[0]= 0.0; // BRG range
hranges[1]= 255.0;
channels[0]= 0; // the three channels
channels[1]= 1;
channels[2]= 2; // Compute histogram
cv::calcHist(&image,
1, // histogram of 1 image only
channels, // the channel used
cv::Mat(), // no mask is used
hist, // the resulting histogram
3, // it is a 3D histogram
histSize, // number of bins
ranges // pixel value range
); return hist;
} // Computes the 1D Hue histogram with a mask.
// BGR source image is converted to HSV
cv::MatND getHueHistogram(const cv::Mat &image) { cv::MatND hist; // Convert to Lab color space
cv::Mat hue;
cv::cvtColor(image, hue, CV_BGR2HSV); // Prepare arguments for a 1D hue histogram
hranges[0]= 0.0;
hranges[1]= 180.0;
channels[0]= 0; // the hue channel // Compute histogram
cv::calcHist(&hue,
1, // histogram of 1 image only
channels, // the channel used
cv::Mat(), // no mask is used
hist, // the resulting histogram
1, // it is a 1D histogram
histSize, // number of bins
ranges // pixel value range
); return hist;
} cv::MatND getHueHistogram(const cv::Mat &image,int minSaturation)
{
cv::MatND hist;
cv::Mat hsv;
cv::cvtColor(image,hsv,CV_BGR2HSV);
cv::Mat mask;
if(minSaturation>0)
{
std::vector<cv::Mat>v;
cv::split(hsv,v);
cv::threshold(v[1],mask,minSaturation,255,cv::THRESH_BINARY);
}
hranges[0]=0.0;
hranges[1]=180.0;
channels[0]=0;
calcHist(&hsv,1,channels,mask,hist,1,histSize,ranges);
return hist;
} }; #endif #include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/video/video.hpp>
#include<iostream>
#include"colorhistogram.h"
#include"ContentFinder.h" using namespace std;
using namespace cv; int main()
{
Mat image=imread("d:/test/opencv/baboon1.jpg");
Mat imageROI=image(Rect(110,260,35,40));
int minSat=65;
ColorHistogram hc;
MatND colorhist=hc.getHueHistogram(imageROI,minSat); namedWindow("image 1");
imshow("image 1",image); ContentFinder finder;
finder.setHistogram(colorhist);
Mat hsv;
image=imread("d:/test/opencv/baboon3.jpg");
namedWindow("image 2");
imshow("image 2",image);
cvtColor(image,hsv,CV_BGR2HSV);
vector<Mat>v;
split(hsv,v);
threshold(v[1],v[1],minSat,255,THRESH_BINARY);
cv::namedWindow("Saturation");
cv::imshow("Saturation",v[1]);
int channel[1]={0};
Mat result=finder.find(hsv,0.0f,180.0f,channel,1); cv::namedWindow("Result Hue");
cv::imshow("Result Hue",result); cv::bitwise_and(result,v[1],result);
cv::namedWindow("Result Hue and");
cv::imshow("Result Hue and",result); finder.setThreshold(-1.0f);//
result= finder.find(hsv,0.0f,180.0f,channel,1);
cv::bitwise_and(result,v[1],result);
cv::namedWindow("Result Hue and raw");
cv::imshow("Result Hue and raw",result); cv::Rect rect(110,260,35,40);
cv::rectangle(image, rect, cv::Scalar(0,0,255)); cv::TermCriteria criteria(cv::TermCriteria::MAX_ITER,10,0.01);
cout << "meanshift= " << cv::meanShift(result,rect,criteria) << endl;// cv::rectangle(image, rect, cv::Scalar(0,255,0));// // Display image
cv::namedWindow("Image 2 result");
cv::imshow("Image 2 result",image); cv::waitKey();
return 0; }
opecv2 MeanShift 使用均值漂移算法查找物体的更多相关文章
- opencv2对读书笔记——使用均值漂移算法查找物体
一些小概念 1.反投影直方图的结果是一个概率映射,体现了已知图像内容出如今图像中特定位置的概率. 2.概率映射能够找到最初的位置,从最初的位置開始而且迭代移动,便能够找到精确的位置,这就是均值漂移算法 ...
- Meanshift均值漂移算法
通俗理解Meanshift均值漂移算法 Meanshift车手?? 漂移?? 秋名山??? 不,不,他是一组算法, 今天我就带大家来了解一下机器学习中的Meanshift均值漂移. Mea ...
- 使用Opencv中均值漂移meanShift跟踪移动目标
Mean Shift均值漂移算法是无参密度估计理论的一种,无参密度估计不需要事先知道对象的任何先验知识,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计,在某一连续点处的密度函数值可由该点邻域 ...
- 基于MeanShift的目标跟踪算法及实现
这次将介绍基于MeanShift的目标跟踪算法,首先谈谈简介,然后给出算法实现流程,最后实现了一个单目标跟踪的MeanShift算法[matlab/c两个版本] csdn贴公式比较烦,原谅我直接截图了 ...
- Opencv均值漂移pyrMeanShiftFiltering彩色图像分割流程剖析
meanShfit均值漂移算法是一种通用的聚类算法,它的基本原理是:对于给定的一定数量样本,任选其中一个样本,以该样本为中心点划定一个圆形区域,求取该圆形区域内样本的质心,即密度最大处的点,再以该点为 ...
- 机器学习实战---K均值聚类算法
一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): ...
- Kosaraju 算法查找强连通分支
有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v, ...
- 回朔法/KMP算法-查找字符串
回朔法:在字符串查找的时候最容易想到的是暴力查找,也就是回朔法.其思路是将要寻找的串的每个字符取出,然后按顺序在源串中查找,如果找到则返回true,否则源串索引向后移动一位,再重复查找,直到找到返回t ...
- 数据结构与算法--KMP算法查找子字符串
数据结构与算法--KMP算法查找子字符串 部分内容和图片来自这三篇文章: 这篇文章.这篇文章.还有这篇他们写得非常棒.结合他们的解释和自己的理解,完成了本文. 上一节介绍了暴力法查找子字符串,同时也发 ...
随机推荐
- OO第三单元总结——JML规格设计
• 1.JML语言的理论基础.应用工具链情况 JML(Java Modeling Language)—— java建模语言,是一种行为接口规范语言( behavioral interface spec ...
- 将Oracle中的数据放入elasticsearch
package com.c4c.test; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Res ...
- java.lang.ClassNotFoundException: org.jaxen.JaxenException
java.lang.ClassNotFoundException: org.jaxen.JaxenException java.lang.ClassNotFoundException: org.jax ...
- Codeforces Round #286 (Div. 1) B. Mr. Kitayuta's Technology (强连通分量)
题目地址:http://codeforces.com/contest/506/problem/B 先用强连通判环.然后转化成无向图,找无向图连通块.若一个有n个点的块内有强连通环,那么须要n条边.即正 ...
- 50个Android开发技巧(12 为控件加入圆角边框)
控件的圆角边框能够使你的App看起来更美观,事实上实现起来也非常easy. (原文地址:http://blog.csdn.net/vector_yi/article/details/24463025) ...
- 集群版本升级——rolling upgrade在ES 单节点从 restart 到加入集群,大概要 100s 左右的时间。也就是说,这 100s 内,该节点上的所有分片都是 unassigned 状态
集群版本升级 Elasticsearch 作为一个新兴项目,版本更新非常快.而且每次版本更新都或多或少带有一些重要的性能优化.稳定性提升等特性.可以说,ES 集群的版本升级,是目前 ES 运维必然要做 ...
- [nginx]第一篇
世界太大,我无法安心学习,决定看一个简单的. nginx-1.11.9的代码是nginx-0.5.38的两倍,决定看前者的. 阅读工具:UnderStand 3.1. 入口在nginx.c的195行. ...
- php创建图像具体步骤
php 的图像处理在验证码是最常见的,下面说下使用php创建图像的具体步骤. 简要说明:PHP 并不仅限于创建 HTML 输出, 它也可以创建和处理包括 GIF, PNG(推荐), JPEG, WBM ...
- HCF4094(CD4094)应用
管脚说明和内部逻辑图 注:管脚图为HCF4094,内部逻辑图为CD4094(HCF4094内部逻辑图在datasheet不清晰,且复杂). 其中控制管脚有3个:STROBE-DATA-CLOCK,Ou ...
- POJ 2367 Genealogical tree【拓扑排序】
题意:大概意思是--有一个家族聚集在一起,现在由家族里面的人讲话,辈分高的人先讲话.现在给出n,然后再给出n行数 第i行输入的数表示的意思是第i行的子孙是哪些数,然后这些数排在i的后面. 比如样例 5 ...