Codeforces 805D/804B - Minimum number of steps
传送门:http://codeforces.com/contest/805/problem/D
对于一个由‘a’、‘b’组成的字符串,有如下操作:将字符串中的一个子串“ab”替换成“bba”。当字符串中不含有子串“ab”时,任务完成。求完成任务的最小操作次数(mod109+7)。
最终,字符串的形式为:
bbb...baaa...a
可以考虑寻找规律:
a.
i)“ab”→“bba”,
ii)“aab”→“abba”→“bbaba”→“bbbbaa”,
iii)“aaab”→“aabba”→“abbaba”→“bbababa”→“bbbbaaba”→“bbbbabbaa”→“bbbbbbabaa”→“bbbbbbbbaaa”;
b.
i)“ab”→“bba”,
ii)“abb”→“bbab”→“bbbba”,
iii)“abbb”→“bbabb”→“bbbbab”→“bbbbbba”。
可见,$"\underbrace{a\cdots a}_{n}b"$型字符串的操作次数为2n-1,$"a\underbrace{b\cdots b}_{m}"$型字符串的操作次数为m。下证之:
a.(证:$"a\underbrace{b\cdots b}_{m}"$型字符串的操作次数为m)
i)当m=1时,“ab”→“bba”,操作次数为1;
ii)假设当m=k时,$"a\underbrace{b\cdots b}_{k}"$→$"\underbrace{b\cdots b}_{2k}a"$,操作次数为k,则当m=k+1时:
由$"a\underbrace{b\cdots b}_{2k+1}b"$→$"\underbrace{b\cdots b}_{2k}ab"$的操作次数为k,由$"\underbrace{b\cdots b}_{2k}ab"$→$"\underbrace{b\cdots b}_{2k}bba"$的操作次数为1。故由$"a\underbrace{b\cdots b}_{2k+1}"$→$"\underbrace{b\cdots b}_{2k+2}a"$的操作次数为k+1。
b.(证:$"\underbrace{a\cdots a}_{n}b"$型字符串的操作次数为2n-1)
i)当n=1时,“ab”→“bba”,操作次数为1;
ii)假设当n=k时,$"\underbrace{a\cdots a}_{k}b"$→$"\underbrace{b\cdots b}_{2^{k}}\underbrace{a\cdots a}_{k}"$,操作次数为2k-1,则当n=k+1时:
由$"a\underbrace{a\cdots a}_{k}b"$→$"a\underbrace{b\cdots b}_{2^{k}}\underbrace{a\cdots a}_{k}"$的操作次数为2k-1,由$"a\underbrace{b\cdots b}_{2^{k}}\underbrace{a\cdots a}_{k}"$→$"\underbrace{b\cdots b}_{2^{k}}\underbrace{b\cdots b}_{2^{k}}a\underbrace{a\cdots a}_{n}"$的操作次数为2k。故由$"\underbrace{a\cdots a}_{k+1}b"$→$"\underbrace{b\cdots b}_{2^{k+1}}\underbrace{a\cdots a}_{k+1}"$的操作次数为2k-1+2k=2k+1-1。
考虑一般的情形:
设字符串的长度为len,其中,字符‘b’占据位置p1,p2,...,pn。这个字符串对应的操作次数为:$\sum_{i=1}^{n}(2^{p_{i}-i}-1)$。
若1..pi的字符‘a’个数为cnti,则cnti=pi-i。这个字符串对应的操作次数为:$\sum_{i=1}^{n}(2^{cnt_{i}}-1)$。
下证之:
(A为只含有字符‘a’的字符串,B为只含有字符‘b’的字符串;A、B可为空。)
i)当n=1时,$"\underbrace{a\cdots a}_{cnt_{1}}\underset{1}{b}"$→"BA",操作次数为$2^{cnt_{1}}-1$;
ii)假设当n=k时,$"A\underset{1}{b}\cdots A\underset{k}{b}\cdots"$→"BA"的操作次数为$\sum_{i=1}^{k}(2^{cnt_{i}}-1)$,则当n=k+1时:
由$"A\underset{1}{b}\cdots A\underset{k}{b}A\underset{k+1}{b}\cdots"$→$"BA*\underset{k+1}{b}\cdots"$的操作次数为$\sum_{i=1}^{k}(2^{cnt_{i}}-1)$,A*的长度为cntk+1,则由$"BA*\underset{k+1}{b}\cdots"$→"BA"的操作次数为$2^{cnt_{k+1}}-1$。故由$"A\underset{1}{b}\cdots A\underset{k}{b}A\underset{k+1}{b}\cdots"$→"BA"的操作次数为$\sum_{i=1}^{k+1}(2^{cnt_{i}}-1)$。
参考程序如下:
#include <stdio.h>
#define MOD 1000000007 int pwr(long long x, int p)
{
if (p == ) return ;
if (p & ) return x * pwr(x, p - ) % MOD;
return pwr(x * x % MOD, p >> ) % MOD;
} int main(void)
{
char ch;
int cnt = , ans = ;
while ((ch = getchar()) != '\n') {
if (ch == 'a') cnt++;
else {
ans += pwr(, cnt) - ;
ans %= MOD;
}
}
printf("%d\n", ans);
}
Codeforces 805D/804B - Minimum number of steps的更多相关文章
- 【codeforces 805D】Minimum number of steps
[题目链接]:http://codeforces.com/contest/805/problem/D [题意] 给你一个字符串; 里面只包括a和b; 让你把里面的"ab"子串全都去 ...
- codeforce 804B Minimum number of steps
cf劲啊 原题: We have a string of letters 'a' and 'b'. We want to perform some operations on it. On each ...
- codeforces 805 D. Minimum number of steps(数学)
题目链接:http://codeforces.com/contest/805/problem/D 题意:只有一个操作就是将ab变成bba直到不能变为止,问最少边几次. 题解:这题可以多列几组来找规律, ...
- Codeforces 805 D Minimum number of steps
题意: 给定一串字符串,将所有“ab”的子串替换为“bba”,询问多少次操作后没有子串“ab”. 分析: 观察可得,将“ab”替换为“bba”有两种结果. ①a移到了b的后面 ②增加了一个b 而且最终 ...
- Codeforces 805D - Minimum number of steps
805D - Minimum number of steps 思路:简单模拟,a每穿过后面一个b,b的个数+1,当这个a穿到最后,相当于把它后面的b的个数翻倍.每个a到达最后的步数相当于这个a与它后面 ...
- Minimum number of steps CodeForces - 805D(签到题)
D. Minimum number of steps time limit per test 1 second memory limit per test 256 megabytes input st ...
- Minimum number of steps 805D
http://codeforces.com/contest/805/problem/D D. Minimum number of steps time limit per test 1 second ...
- Codeforces Round #411 div 2 D. Minimum number of steps
D. Minimum number of steps time limit per test 1 second memory limit per test 256 megabytes input st ...
- Codeforces805D. Minimum number of steps 2017-05-05 08:46 240人阅读 评论(0) 收藏
D. Minimum number of steps time limit per test 1 second memory limit per test 256 megabytes input st ...
随机推荐
- 5200 fqy的难题----2的疯狂幂
5200 fqy的难题----2的疯狂幂 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description ...
- 【BZOJ 2565】 最长双回文串
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2565 [算法] Manacher [代码] #include<bits/std ...
- 杂项-TMod:常见错误
ylbtech-杂项-TMod:常见错误 1.返回顶部 1. 1.1. {Template Error} TypeError: dateDiff is not a function at Array. ...
- leetcode树相关
目录 144前序遍历 94中序遍历(98验证二叉搜索树.230二叉搜索树中第K小的元素) 145后序遍历 102/107层次遍历(104二叉树最大深度.103 105从前序与中序遍历序列构造二叉树 1 ...
- Blender插件编写指南
前言 Blender插件是Blender的利器, 用户可以使用各种插件扩充Blender的功能. Blender Python插件以bpy.props, bpy.types.Operator, bpy ...
- BZOJ 4800 折半暴搜
思路: 把它拆成两半 分别搜一发 两部分分别排好序 用two-pointers扫一遍 就可以了. (读入也要用long long) //By SiriusRen #include <cstdi ...
- 查看 Android App 的 versionCode
有 App 源码时,可以直接查看 AndroidManifest.xml 文件. <manifest android:versionName="1.4" android:ve ...
- 4 Things I Wish I Would Have Known When I Started My Software Development Career【当我最开始从事软件工程师的时候我希望我知道的四件事】
英文原文:http://simpleprogrammer.com/2013/08/19/software-development-career/ My software development car ...
- HttpWebRequest 知识点
string Url = System.Configuration.ConfigurationManager.AppSettings["CallPaperInvoiceURL"]; ...
- SLAM: Structure From Motion-移动中三维场景重建
wiki链接:https://en.wikipedia.org/wiki/Structure_from_motion 三维重建: 三维物体建模总结 1. 视野内三维物体重建 : Kinect fusi ...