How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Problem Description
  Now
you get a number N, and a M-integers set, you should find out how many
integers which are small than N, that they can divided exactly by any
integers in the set. For example, N=12, and M-integer set is {2,3}, so
there is another set {2,3,4,6,8,9,10}, all the integers of the set can
be divided exactly by 2 or 3. As a result, you just output the number 7.
 
Input
  There
are a lot of cases. For each case, the first line contains two integers
N and M. The follow line contains the M integers, and all of them are
different from each other. 0<N<2^31,0<M<=10, and the M
integer are non-negative and won’t exceed 20.
 
Output
  For each case, output the number.
 
Sample Input
12 2
2 3
 
Sample Output
7
分析:容斥原理,注意long long;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
const int maxn=1e5+;
using namespace std;
inline ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
inline ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline void umax(ll &p,ll q){if(p<q)p=q;}
inline void umin(ll &p,ll q){if(p>q)p=q;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,fac[],all;
int main()
{
int i,j;
while(~scanf("%d%d",&m,&n))
{
--m;
all=;
rep(i,,n-)
{
scanf("%d",&j);
if(j)fac[all++]=j;
}
ll ret=;
rep(i,,(<<all)-)
{
ll now=,cnt=;
rep(j,,all-)
{
if(i&(<<j))
{
cnt++;
now=now*fac[j]/gcd(now,fac[j]);
}
}
if(cnt&)ret+=m/now;
else ret-=m/now;
}
printf("%lld\n",ret);
}
return ;
}

How many integers can you find的更多相关文章

  1. [LeetCode] Sum of Two Integers 两数之和

    Calculate the sum of two integers a and b, but you are not allowed to use the operator + and -. Exam ...

  2. [LeetCode] Divide Two Integers 两数相除

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  3. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  4. Leetcode Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. 不用乘.除.求余操作,返回两整数相除的结果,结 ...

  5. LeetCode Sum of Two Integers

    原题链接在这里:https://leetcode.com/problems/sum-of-two-integers/ 题目: Calculate the sum of two integers a a ...

  6. Nim Game,Reverse String,Sum of Two Integers

    下面是今天写的几道题: 292. Nim Game You are playing the following Nim Game with your friend: There is a heap o ...

  7. POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)

    A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...

  8. LeetCode 371. Sum of Two Integers

    Calculate the sum of two integers a and b, but you are not allowed to use the operator + and -. Exam ...

  9. leetcode-【中等题】Divide Two Integers

    题目 Divide two integers without using multiplication, division and mod operator. If it is overflow, r ...

  10. 解剖SQLSERVER 第十三篇 Integers在行压缩和页压缩里的存储格式揭秘(译)

    解剖SQLSERVER 第十三篇    Integers在行压缩和页压缩里的存储格式揭秘(译) http://improve.dk/the-anatomy-of-row-amp-page-compre ...

随机推荐

  1. SQL server触发器、存储过程操作远程数据库插入数据,解决服务器已存在的问题

    近期弄了一个小项目,也不是非常复杂,须要将一个数据库的一些数据备份到另外一个库.不是本地,可能是网络上其它的数据库.想了一下,用了存储过程和触发器. 也不是非常复杂,首先我须要操作远程数据库,于是写了 ...

  2. C++第11周(春)项目3 - 点类派生直线类

    课程首页在:http://blog.csdn.net/sxhelijian/article/details/11890759.内有完整教学方案及资源链接 [项目3 - 点类派生直线类]定义点类Poin ...

  3. 封装RecyclerViewAdapter实现RecyclerView下拉刷新上拉载入很多其它

    实现 关于下拉刷新使用的是github上的项目Ultra Pull To Refresh项目. gradle依赖例如以下: compile 'in.srain.cube:ultra-ptr:1.0.1 ...

  4. luogu1522 牛的旅行

    题目大意 每个牧场里的某些坐标位置有牧区,牧区间有一个个路径(长度为位置间的直线距离).一个连通块内两个节点间的最短路径长度最大值为它的直径.请编程找出一条连接两个不同牧场的路径,使得连上这条路径后, ...

  5. App/Activity/Screen Orientation

    测试android屏幕方向的小Demo 1.首先我们在values下面新建文件arrays.xml(用来在下拉列表中显示) <?xml version="1.0" encod ...

  6. case when in sql server's stored procedure

    https://docs.microsoft.com/en-us/sql/t-sql/language-elements/case-transact-sql Evaluates a list of c ...

  7. C# 正则表达式 和 JAVA表达式是想通的

    正则表达式语法 也许有人会说,现在需要正则表达式去验证什么的话,直接在网上找不久一大片吗?还需要学什么啊! 是的,现在在网上找确实是一找一大片,但是,有时候我们也遇到这样的情况,就是我们在网上找的复制 ...

  8. .NET通用基本权限系统框架源代码

    DEMO下载地址: http://download.csdn.net/detail/shecixiong/5372895 一.开发技术:B/S(.NET C# ) 1.Windows XP以上 (支援 ...

  9. poj--2031--Building a Space Station(prime)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6635   Accepte ...

  10. B3402 [Usaco2009 Open]Hide and Seek 捉迷藏 最短路

    直接最短路板子,dij堆优化. 题干: 题目描述 贝茜在和约翰玩一个“捉迷藏”的游戏. 她正要找出所有适合她躲藏的安全牛棚.一共有N(≤N≤)个牛棚,被编为1到N号.她知道约翰(捉牛者)从牛棚1出发. ...