tflearn中一些CNN RNN的例子
lstm.py
# -*- coding: utf-8 -*-
"""
Simple example using LSTM recurrent neural network to classify IMDB
sentiment dataset.
References:
- Long Short Term Memory, Sepp Hochreiter & Jurgen Schmidhuber, Neural
Computation 9(8): 1735-1780, 1997.
- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. (2011). Learning Word Vectors for Sentiment
Analysis. The 49th Annual Meeting of the Association for Computational
Linguistics (ACL 2011).
Links:
- http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
- http://ai.stanford.edu/~amaas/data/sentiment/
"""
from __future__ import division, print_function, absolute_import import tflearn
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb # IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
valid_portion=0.1)
trainX, trainY = train
testX, testY = test # Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=100, value=0.)
testX = pad_sequences(testX, maxlen=100, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY)
testY = to_categorical(testY) # Network building
net = tflearn.input_data([None, 100])
net = tflearn.embedding(net, input_dim=10000, output_dim=128)
net = tflearn.lstm(net, 128, dropout=0.8)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy') # Training
model = tflearn.DNN(net, tensorboard_verbose=0)
model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
batch_size=32)
dynamic_lstm.py
# -*- coding: utf-8 -*-
"""
Simple example using a Dynamic RNN (LSTM) to classify IMDB sentiment dataset.
Dynamic computation are performed over sequences with variable length.
References:
- Long Short Term Memory, Sepp Hochreiter & Jurgen Schmidhuber, Neural
Computation 9(8): 1735-1780, 1997.
- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. (2011). Learning Word Vectors for Sentiment
Analysis. The 49th Annual Meeting of the Association for Computational
Linguistics (ACL 2011).
Links:
- http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
- http://ai.stanford.edu/~amaas/data/sentiment/
"""
from __future__ import division, print_function, absolute_import import tflearn
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb # IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
valid_portion=0.1)
trainX, trainY = train
testX, testY = test # Data preprocessing
# NOTE: Padding is required for dimension consistency. This will pad sequences
# with 0 at the end, until it reaches the max sequence length. 0 is used as a
# masking value by dynamic RNNs in TFLearn; a sequence length will be
# retrieved by counting non zero elements in a sequence. Then dynamic RNN step
# computation is performed according to that length.
trainX = pad_sequences(trainX, maxlen=100, value=0.)
testX = pad_sequences(testX, maxlen=100, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY)
testY = to_categorical(testY) # Network building
net = tflearn.input_data([None, 100])
# Masking is not required for embedding, sequence length is computed prior to
# the embedding op and assigned as 'seq_length' attribute to the returned Tensor.
net = tflearn.embedding(net, input_dim=10000, output_dim=128)
net = tflearn.lstm(net, 128, dropout=0.8, dynamic=True)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy') # Training
model = tflearn.DNN(net, tensorboard_verbose=0)
model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
batch_size=32)
bidirectional_lstm.py
# -*- coding: utf-8 -*-
"""
Simple example using LSTM recurrent neural network to classify IMDB
sentiment dataset.
References:
- Long Short Term Memory, Sepp Hochreiter & Jurgen Schmidhuber, Neural
Computation 9(8): 1735-1780, 1997.
- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. (2011). Learning Word Vectors for Sentiment
Analysis. The 49th Annual Meeting of the Association for Computational
Linguistics (ACL 2011).
Links:
- http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
- http://ai.stanford.edu/~amaas/data/sentiment/
""" from __future__ import division, print_function, absolute_import import tflearn
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.embedding_ops import embedding
from tflearn.layers.recurrent import bidirectional_rnn, BasicLSTMCell
from tflearn.layers.estimator import regression # IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
valid_portion=0.1)
trainX, trainY = train
testX, testY = test # Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=200, value=0.)
testX = pad_sequences(testX, maxlen=200, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY)
testY = to_categorical(testY) # Network building
net = input_data(shape=[None, 200])
net = embedding(net, input_dim=20000, output_dim=128)
net = bidirectional_rnn(net, BasicLSTMCell(128), BasicLSTMCell(128))
net = dropout(net, 0.5)
net = fully_connected(net, 2, activation='softmax')
net = regression(net, optimizer='adam', loss='categorical_crossentropy') # Training
model = tflearn.DNN(net, clip_gradients=0., tensorboard_verbose=2)
model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=64)
cnn_sentence_classification.py
# -*- coding: utf-8 -*-
"""
Simple example using convolutional neural network to classify IMDB
sentiment dataset.
References:
- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. (2011). Learning Word Vectors for Sentiment
Analysis. The 49th Annual Meeting of the Association for Computational
Linguistics (ACL 2011).
- Kim Y. Convolutional Neural Networks for Sentence Classification[C].
Empirical Methods in Natural Language Processing, 2014.
Links:
- http://ai.stanford.edu/~amaas/data/sentiment/
- http://emnlp2014.org/papers/pdf/EMNLP2014181.pdf
"""
from __future__ import division, print_function, absolute_import import tensorflow as tf
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_1d, global_max_pool
from tflearn.layers.merge_ops import merge
from tflearn.layers.estimator import regression
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb # IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
valid_portion=0.1)
trainX, trainY = train
testX, testY = test # Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=100, value=0.)
testX = pad_sequences(testX, maxlen=100, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY)
testY = to_categorical(testY) # Building convolutional network
network = input_data(shape=[None, 100], name='input')
network = tflearn.embedding(network, input_dim=10000, output_dim=128)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(trainX, trainY, n_epoch = 5, shuffle=True, validation_set=(testX, testY), show_metric=True, batch_size=32)
tflearn中一些CNN RNN的例子的更多相关文章
- 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...
- [转] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文 ...
- 深度学习-CNN+RNN笔记
以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分 ...
- 使用Keras搭建cnn+rnn, BRNN,DRNN等模型
Keras api 提前知道: BatchNormalization, 用来加快每次迭代中的训练速度 Normalize the activations of the previous layer a ...
- 我教女朋友学编程html系列(5) html中table的用法和例子
女朋友不是学计算机的,但是现在从事计算机行业,做技术支持,她想学习编程,因此我打算每天教她一点点,日积月累,带她学习编程,如果其他初学者感兴趣,可以跟着学. 为了将table介绍的简单.生动,具有实战 ...
- Android中Service的一个Demo例子
Android中Service的一个Demo例子 Service组件是Android系统重要的一部分,网上看了代码,很简单,但要想熟练使用还是需要Coding. 本文,主要贴代码,不对Servic ...
- 【ABAP系列】SAP ABAP中ALV使用HTML的例子
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP中ALV使用HT ...
- Java中连接MySql数据库的例子
Java中连接MySql数据库的例子: package com.joinmysql.demo; import java.sql.DriverManager; import java.sql.Resul ...
- CNN & RNN 及一些常识知识(不断扩充中)
参考: http://blog.csdn.net/iamrichardwhite/article/details/51089199 一.神经网络的发展历史 五六十年代,提出感知机 八十年代,提出多层感 ...
随机推荐
- Linq怎么支持Monad
在上一篇创建了我们的第一个Monad, Identity<T>. 我们确定了类型要变成Monad, 它必须有一个type constructor(Identity<T>), 和 ...
- Struts2框架学习(三)——配置详解
一.struts.xml配置 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE struts ...
- 【Oracle】闪回技术
1.闪回技术描述 2.数据库的准备: --undo表空间要设置成AUTO,设置合适的保存时间.undo表空间: SYS@ENMOEDU> show parameter undo NAME TYP ...
- matlab中的@函数
原文链接:http://blog.sina.com.cn/s/blog_5e73a8fc0100t9yg.html 这是个函数句柄 @(x,y) 表示未知数是x和y punct - Funct ...
- PLSQL 11注册码
plsql 11 注册码:Product Code:4t46t6vydkvsxekkvf3fjnpzy5wbuhphqzserial Number:601769 password:xs374ca
- 2017/01/20 学习笔记 关于修改和重打jar包
背景 客户提供了jar包,但发现db表中缺少一个字段,db追加以后需要修改jar包中的source. 操作 如何修改jar包中的source并重新打一个新的jar包,做了如下操作. ① 开包 解压j ...
- css—各浏览器下的背景色渐变
.linear{ width:100%; height:600px; FILTER: progid:DXImageTransform.Microsoft.Gradient(gradientType=0 ...
- 如何像Uber一样给工程师派单 解放外包落后的生产力
2014年,陈柯好的第一个创业项目失败,半年之内,陈柯好以技术合伙人的方式游走于旅游.电商.团购.票务等各种领域.正当他对职业方向感到迷茫时,“大众创业.万众创新”的口号被提了出来 一时间,技术需求被 ...
- Linux下挂载分区 (本人实例)
设置分区开机自动挂载 要在/etc/fstab里设置一行 把上面空格去掉就行了
- input标签处理多文件上传
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...