lstm.py

# -*- coding: utf-8 -*-
"""
Simple example using LSTM recurrent neural network to classify IMDB
sentiment dataset.
References:
- Long Short Term Memory, Sepp Hochreiter & Jurgen Schmidhuber, Neural
Computation 9(8): 1735-1780, 1997.
- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. (2011). Learning Word Vectors for Sentiment
Analysis. The 49th Annual Meeting of the Association for Computational
Linguistics (ACL 2011).
Links:
- http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
- http://ai.stanford.edu/~amaas/data/sentiment/
"""
from __future__ import division, print_function, absolute_import import tflearn
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb # IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
valid_portion=0.1)
trainX, trainY = train
testX, testY = test # Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=100, value=0.)
testX = pad_sequences(testX, maxlen=100, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY)
testY = to_categorical(testY) # Network building
net = tflearn.input_data([None, 100])
net = tflearn.embedding(net, input_dim=10000, output_dim=128)
net = tflearn.lstm(net, 128, dropout=0.8)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy') # Training
model = tflearn.DNN(net, tensorboard_verbose=0)
model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
batch_size=32)

dynamic_lstm.py

# -*- coding: utf-8 -*-
"""
Simple example using a Dynamic RNN (LSTM) to classify IMDB sentiment dataset.
Dynamic computation are performed over sequences with variable length.
References:
- Long Short Term Memory, Sepp Hochreiter & Jurgen Schmidhuber, Neural
Computation 9(8): 1735-1780, 1997.
- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. (2011). Learning Word Vectors for Sentiment
Analysis. The 49th Annual Meeting of the Association for Computational
Linguistics (ACL 2011).
Links:
- http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
- http://ai.stanford.edu/~amaas/data/sentiment/
"""
from __future__ import division, print_function, absolute_import import tflearn
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb # IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
valid_portion=0.1)
trainX, trainY = train
testX, testY = test # Data preprocessing
# NOTE: Padding is required for dimension consistency. This will pad sequences
# with 0 at the end, until it reaches the max sequence length. 0 is used as a
# masking value by dynamic RNNs in TFLearn; a sequence length will be
# retrieved by counting non zero elements in a sequence. Then dynamic RNN step
# computation is performed according to that length.
trainX = pad_sequences(trainX, maxlen=100, value=0.)
testX = pad_sequences(testX, maxlen=100, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY)
testY = to_categorical(testY) # Network building
net = tflearn.input_data([None, 100])
# Masking is not required for embedding, sequence length is computed prior to
# the embedding op and assigned as 'seq_length' attribute to the returned Tensor.
net = tflearn.embedding(net, input_dim=10000, output_dim=128)
net = tflearn.lstm(net, 128, dropout=0.8, dynamic=True)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy') # Training
model = tflearn.DNN(net, tensorboard_verbose=0)
model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
batch_size=32)

bidirectional_lstm.py

# -*- coding: utf-8 -*-
"""
Simple example using LSTM recurrent neural network to classify IMDB
sentiment dataset.
References:
- Long Short Term Memory, Sepp Hochreiter & Jurgen Schmidhuber, Neural
Computation 9(8): 1735-1780, 1997.
- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. (2011). Learning Word Vectors for Sentiment
Analysis. The 49th Annual Meeting of the Association for Computational
Linguistics (ACL 2011).
Links:
- http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
- http://ai.stanford.edu/~amaas/data/sentiment/
""" from __future__ import division, print_function, absolute_import import tflearn
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.embedding_ops import embedding
from tflearn.layers.recurrent import bidirectional_rnn, BasicLSTMCell
from tflearn.layers.estimator import regression # IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
valid_portion=0.1)
trainX, trainY = train
testX, testY = test # Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=200, value=0.)
testX = pad_sequences(testX, maxlen=200, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY)
testY = to_categorical(testY) # Network building
net = input_data(shape=[None, 200])
net = embedding(net, input_dim=20000, output_dim=128)
net = bidirectional_rnn(net, BasicLSTMCell(128), BasicLSTMCell(128))
net = dropout(net, 0.5)
net = fully_connected(net, 2, activation='softmax')
net = regression(net, optimizer='adam', loss='categorical_crossentropy') # Training
model = tflearn.DNN(net, clip_gradients=0., tensorboard_verbose=2)
model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=64)

cnn_sentence_classification.py

# -*- coding: utf-8 -*-
"""
Simple example using convolutional neural network to classify IMDB
sentiment dataset.
References:
- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. (2011). Learning Word Vectors for Sentiment
Analysis. The 49th Annual Meeting of the Association for Computational
Linguistics (ACL 2011).
- Kim Y. Convolutional Neural Networks for Sentence Classification[C].
Empirical Methods in Natural Language Processing, 2014.
Links:
- http://ai.stanford.edu/~amaas/data/sentiment/
- http://emnlp2014.org/papers/pdf/EMNLP2014181.pdf
"""
from __future__ import division, print_function, absolute_import import tensorflow as tf
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_1d, global_max_pool
from tflearn.layers.merge_ops import merge
from tflearn.layers.estimator import regression
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb # IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
valid_portion=0.1)
trainX, trainY = train
testX, testY = test # Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=100, value=0.)
testX = pad_sequences(testX, maxlen=100, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY)
testY = to_categorical(testY) # Building convolutional network
network = input_data(shape=[None, 100], name='input')
network = tflearn.embedding(network, input_dim=10000, output_dim=128)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(trainX, trainY, n_epoch = 5, shuffle=True, validation_set=(testX, testY), show_metric=True, batch_size=32)

tflearn中一些CNN RNN的例子的更多相关文章

  1. 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

    https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...

  2. [转] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

    转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文 ...

  3. 深度学习-CNN+RNN笔记

    以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分 ...

  4. 使用Keras搭建cnn+rnn, BRNN,DRNN等模型

    Keras api 提前知道: BatchNormalization, 用来加快每次迭代中的训练速度 Normalize the activations of the previous layer a ...

  5. 我教女朋友学编程html系列(5) html中table的用法和例子

    女朋友不是学计算机的,但是现在从事计算机行业,做技术支持,她想学习编程,因此我打算每天教她一点点,日积月累,带她学习编程,如果其他初学者感兴趣,可以跟着学. 为了将table介绍的简单.生动,具有实战 ...

  6. Android中Service的一个Demo例子

    Android中Service的一个Demo例子  Service组件是Android系统重要的一部分,网上看了代码,很简单,但要想熟练使用还是需要Coding.  本文,主要贴代码,不对Servic ...

  7. 【ABAP系列】SAP ABAP中ALV使用HTML的例子

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP中ALV使用HT ...

  8. Java中连接MySql数据库的例子

    Java中连接MySql数据库的例子: package com.joinmysql.demo; import java.sql.DriverManager; import java.sql.Resul ...

  9. CNN & RNN 及一些常识知识(不断扩充中)

    参考: http://blog.csdn.net/iamrichardwhite/article/details/51089199 一.神经网络的发展历史 五六十年代,提出感知机 八十年代,提出多层感 ...

随机推荐

  1. Tomcat web deploy

    环境: apache-tomcat-7.0.73 java version "1.8.0_112" 创建普通用户,使用 sudu进行操作 JDK 配置 下载地址:http://ww ...

  2. 移动端布局 rem,和px

    1.rem布局,根据屏幕来计算rem,也就是意义上的适应屏幕,但是一些字体大小转换和计算有些复杂. // rem 布局重定义 (function(){ $('html').css('font-size ...

  3. chrome模拟微信

    这里有一个模拟器,既可以设置模拟很多型号的手机设备,也可以伪造你想要的HTTP_USER_AGENT.选择USER_AGENT,选other,微信的HTTP_USER_AGENT是: 在iPhone下 ...

  4. ie6 中文字符编码 出现的问题解决

    0 前言   公司要求网页要支持ie6.7.8,结果我的设备在ie7.8.9均工作正常,而在ie6时就出现各种奇怪的错误,在这个背景下,开始动手解决网页不兼容ie6的情况.   1 搭建ie6的实验平 ...

  5. openlayers5学习笔记-001

    tmp.initPoint = function (items) { //初始化所有农户点坐标,聚合 var count = items.length; var features = new Arra ...

  6. virtualenv 虚拟环境依赖安装

    虚拟环境依赖安装 开发要学会用 virtualenv 来管理多个开发环境 Ubuntu/Centos/MacOS 下 virtualenvwrapper 使得virtualenv变得更好用,所以我们一 ...

  7. SQL增删改

    USE sqlxx CREATE TABLE ygb( sid INT, sname VARCHAR(20), sgender VARCHAR(2), sbirthday DATE, semail V ...

  8. SQL SEVER (ROLLUP与CUBE,ROW_NUMBER())使用方法

    1.建立测试专用数据: if object_id('TESTDB') is not null drop table TESTDB ), B INT) insert into TESTDB union ...

  9. 用div布局,页面copyright部分始终居于

    <!DOCTYPE HTML><html><head><meta http-equiv="Content-Type" content=&q ...

  10. php设置cookie和删除cookie

    设置cookie Example : - set - <?php setcookie( "name", "value", "future_tim ...