[luogu P5349] 幂 解题报告 (分治FFT)
interlinkage:
https://www.luogu.org/problemnew/show/P5349
description:
solution:
设$g(x)=\sum_{n=0}^{∞}n^xr^n$
$rg(x)=\sum_{n=0}^{∞}n^xr^{n+1}=\sum_{n=1}^{∞}(n-1)^xr^n$
$g(x)=\sum_{n=1}^{∞}n^xr^n(x>0)$(注意$x>0$这个条件,$x=0$的时候这个不符合)
$(1-r)g(x)=\sum_{n=1}^{∞}(n^x-(n-1)^x)r^n=r\sum_{n=0}^{∞}r^n((n+1)^x-n^x)=r\sum_{n=0}^{∞}r^n\sum_{j=0}^{x-1}\dbinom{x}{j}n^j$
$=r\sum_{j=0}^{x-1}\dbinom{x}{j}\sum_{n=0}^{∞}n^jr^n=r\sum_{j=0}^{x-1}\dbinom{x}{j}g(j)$
于是$g(x)=\frac{r}{1-r}\sum_{j=0}^{x-1}\dbinom{x}{j}g(j)$
继续化简得到$\frac{g(x)}{x!}=\sum_{j=0}^{x-1}\frac{g(j)}{j!}(\frac{r}{1-r}*\frac{1}{(x-j)!})$
这个显然可以用分治$FFT$来做
值得注意的是$g(0)=\frac{1}{1-r}$,而不是$\frac{r}{1-r}$,因为在这里$0^0$的值实际上是算$1$的
直接分治的话复杂度为$O(nlognlogn)$,多项式求逆时间复杂度为$O(nlogn)$
code:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll; const int N=4e5+;
const ll mo=;
int m;
ll r;
ll a[N],wn[N],R[N],fac[N],inv[N];
inline ll read()
{
char ch=getchar();ll s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
ll qpow(ll a,ll b)
{
ll re=;
for (;b;b>>=,a=a*a%mo) if (b&) re=re*a%mo;
return re;
}
void pre()
{
for (int i=;i<=;i++)
{
ll t=1ll<<i;
wn[i]=qpow(,(mo-)/t);
}
}
void ntt(int limit,ll *a,int type)
{
for (int i=;i<limit;i++) if (i<R[i]) swap(a[i],a[R[i]]);
for (int len=,id=;len<limit;len<<=)
{
++id;
for (int k=;k<limit;k+=(len<<))
{
ll w=;
for (int l=;l<len;l++,w=w*wn[id]%mo)
{
ll Nx=a[k+l],Ny=w*a[k+len+l]%mo;
a[k+l]=(Nx+Ny)%mo;
a[k+len+l]=((Nx-Ny)%mo+mo)%mo;
}
}
}
if (type==) return;
for (int i=;i<limit/;i++) swap(a[i],a[limit-i]);
ll inv=qpow(limit,mo-);
for (int i=;i<limit;i++) a[i]=a[i]%mo*inv%mo;
}
ll A[N],B[N];
void cdqfft(ll *a,ll *b,int l,int r)
{
if (l==r) return;
int mid=l+r>>;
cdqfft(a,b,l,mid); int limit=,L=;
while (limit<=(r-l+)*) limit<<=,++L;
for (int i=;i<=limit;i++) R[i]=(R[i>>]>>)|((i&)<<(L-)); for (int j=;j<=limit;j++) A[j]=,B[j]=;
for (int j=l;j<=mid;j++) A[j-l]=a[j];
for (int j=;j<=r-l;j++) B[j]=b[j];
ntt(limit,A,);ntt(limit,B,);
for (int i=;i<=limit;i++) A[i]=A[i]*B[i]%mo;
ntt(limit,A,-);
for (int x=mid+;x<=r;x++) a[x]=(a[x]+A[x-l])%mo;
cdqfft(a,b,mid+,r);
}
ll g[N],f[N];
int main()
{
pre();
m=read();r=read();
for (int i=;i<=m;i++) a[i]=read();
fac[]=inv[]=;
for (int i=;i<=m;i++) fac[i]=fac[i-]*i%mo;
inv[m]=qpow(fac[m],mo-);
for (int i=m-;i>=;i--) inv[i]=inv[i+]*(i+)%mo;
f[]=qpow(-r+mo,mo-)%mo;
for (int i=;i<=m;i++) g[i]=inv[i]*f[]%mo*r%mo;
cdqfft(f,g,,m);
ll ans=;
for (int i=;i<=m;i++) ans=(ans+a[i]*f[i]%mo*fac[i]%mo)%mo;
printf("%lld\n",ans);
return ;
}
[luogu P5349] 幂 解题报告 (分治FFT)的更多相关文章
- 【九度OJ】题目1474:矩阵幂 解题报告
[九度OJ]题目1474:矩阵幂 解题报告 标签(空格分隔): 九度OJ http://ac.jobdu.com/problem.php?pid=1474 题目描述: 给定一个n*n的矩阵,求该矩阵的 ...
- [题解] Luogu P4721 【模板】分治 FFT
分治FFT的板子为什么要求逆呢 传送门 这个想法有点\(cdq\)啊,就是考虑分治,在算一段区间的时候,我们把他分成两个一样的区间,然后先做左区间的,算完过后把左区间和\(g\)卷积一下,这样就可以算 ...
- [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...
- Luogu 4721 【模板】分治 FFT
还不会这题的多项式求逆的算法. 发现每一项都是一个卷积的形式,那么我们可以使用$NTT$来加速,直接做是$O(n^2logn)$的,我们考虑如何加速转移. 可以采用$cdq$分治的思想,对于区间$[l ...
- Luogu P5349 幂
大力数学题,发现自己好久没写多项式水平急速下降,求逆都要写挂233 首先看到关于多项式的等比数列求和,我们容易想到先求出每一项的系数然后最后累加起来即可,即设\(f_i=\sum_{n=0}^{\in ...
- [luogu P4197] Peaks 解题报告(在线:kruskal重构树+主席树 离线:主席树+线段树合并)
题目链接: https://www.luogu.org/problemnew/show/P4197 题目: 在Bytemountains有N座山峰,每座山峰有他的高度$h_i$.有些山峰之间有双向道路 ...
- [luogu P3360] 偷天换日 解题报告(树形DP)
题目链接:https://www.luogu.org/problemnew/show/P3360 题解: 首先我们把边上的消耗放到向下的点上,如果是叶子节点的话就先做一次0/1背包 发现这是一颗二叉树 ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- BZOJ1008 /乘法原理+快速幂 解题报告
1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...
随机推荐
- 【Linux】连接CRT
linux中出现crt连接不上多数是ip地址设置不正确. window中命令行界面(cmd进入),输入ipconfig,查看虚拟机的ip. 打开linux终端,命令行下输入:ifconfig eth0 ...
- SAP computer之architecture
Simple-As-Possible computer introduces all the cruicial ideas behind computer operation without bury ...
- SQL Server对数据进行修改
SQL Server对数据进行修改,修改数据库中的数据. auto"> <tr style="background:red"> <td>编号 ...
- C#中为什么字段设为只读依然可以在构造函数中为它赋值
因为只读是为了保证在类的 实例 被 创建后 ,当前属性不能被改变 构造函数中实例还没创建完成,所以依然可以改变
- datawhale爬虫实训4
DataWhale-Task4(爬取丁香园2) 任务:使用lxml爬虫帖子相关的回复与部分用户信息(用户名,头像地址,回复详情) 难点:需要登录才能看到所有回复 浏览器登录上去,查看cookies信息 ...
- 在eclipse中运行maven命令没有反应,console也不打印信息
eclipse的maven项目中,在run as 执行maven命令的时候发现毫无反应,console也不打印信息,原因是因为没有传参数,解决办法如下:①打开eclipse的window菜单: ②接 ...
- Windows 安装react native
1.下载node.js (https://nodejs.org/en/) 2.安装node.js,安装完成后按住 图标键+R ,输入CMD进入命令行终端,输入npm -v C:\Users\Admin ...
- Mongodb--切片
1.在3台服务器上分别运行 2717 , 27018,27109,互为副本集,形成3套replSet 2.在3台服务器上各配置config.server,运行在27020端口上,和配置mongod的命 ...
- BZOJ——T 1053: [HAOI2007]反素数ant
http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6) ...
- BZOJ 1044 HAOI2008 木棍切割 二分答案+动态规划
题目大意:给定n个连在一起的木棍.分成m+1段.使每段最大值最小,求最大值的最小值及最大值最小时切割的方案数 第一问水爆了--二分答案妥妥秒过 第二问就有些难度了 首先我们令f[i][j]表示用前j个 ...