题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列:

• f(1) = 1

• f(2) = 1

• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)

题目描述

请你求出 f(n) mod 1000000007 的值。

输入输出格式

输入格式:

·第 1 行:一个整数 n

输出格式:

第 1 行: f(n) mod 1000000007 的值

输入输出样例

输入样例#1: 复制

5
输出样例#1: 复制

5
输入样例#2: 复制

10
输出样例#2: 复制

55

说明

对于 60% 的数据: n ≤ 92

对于 100% 的数据: n在long long(INT64)范围内。

感觉自己学的一直是假的矩阵快速幂。。。

辅助矩阵为

$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$

#include<cstdio>
#include<cstring>
#define int long long
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++)
using namespace std;
const int MAXN=;
const int mod=1e9+;
char buf[<<],*p1=buf,*p2=buf;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,k;
struct Matrix
{
int m[MAXN][MAXN];
Matrix operator * (const Matrix a)const
{
Matrix ans={};
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
ans.m[i][j]=(ans.m[i][j]+(m[i][k]*a.m[k][j])%mod)%mod;
return ans;
}
Matrix pow(int p)
{
Matrix ans,a=(*this);
for(int i=;i<=n;i++) ans.m[i][i]=;
while(p)
{
if(p&) ans=ans*a;
a=a*a;
// a.print();
p>>=;
}
return ans;
}
void print()
{
for(int i=;i<=n;i++,puts(""))
for(int j=;j<=n;j++)
printf("%d ",m[i][j]);
printf("*******************\n");
}
};
main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
k=read();n=;
Matrix temp,ans;
temp.m[][]=;temp.m[][]=;
temp.m[][]=;temp.m[][]=;
ans.m[][]=;ans.m[][]=;
ans.m[][]=;ans.m[][]=;
temp=temp.pow(k);
ans=ans*temp;
printf("%d",ans.m[][]);
return ;
}

洛谷P1962 斐波那契数列(矩阵快速幂)的更多相关文章

  1. 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质

    P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...

  2. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  3. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  4. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  5. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

  6. 洛谷P1962 斐波那契数列题解

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  7. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

  8. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  9. 51nod1242 斐波那契数列 矩阵快速幂

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...

随机推荐

  1. JVM上的下一个Java——Scala

    Scala是一种针对 JVM 将函数和面向对象技术组合在一起的编程语言.Scala编程语言近来抓住了很多开发者的眼球.它看起来像是一种纯粹的面向对象编程语言,而又无缝地结合了命令式和函数式的编程风格. ...

  2. cms初步构想

    一.cms系统的初步构想 公司正准备使用yii框架重新弄个类cms的系统: 初步的功能: 栏目文章的管理 SEO的优化功能 推荐位管理 一些思路和规则: 数据库表名的定义:通过"大模块名称+ ...

  3. windows 命令行 for 用法

    for /r 目录名 %i in (匹配模式1,匹配模式2) do @echo %i for /r SATA %i in (*.txt) do @echo %i D:\REY\test>for ...

  4. 对服务器磁盘、CPU、内存使用状态,设置163邮件告警

    1,桥接模式可上网,首先你的邮箱已经开通yum -y install mailx dos2unix.x86_64  mailx -V[root@localhost ~]# vim /etc/mail. ...

  5. Vue学习之路第十八篇:私有过滤器的使用

    1.上篇已经介绍了全局过滤器的使用,“全局”顾名思义就是一次定义处处使用,可以被一个页面里不同的Vue对象所使用,如下代码所示: <body> <div id="app1& ...

  6. 关于高校表白APP的用户模板和用户场景

      用户模板一: 用户名 小明 性别,年龄 男,20岁 用户状况 单身,在校大学生 生活爱好 喜欢打篮球,唱歌 典型场景 希望找到一个心仪的可以走到最后的姑娘 典型描述 交友 用户比例 ? 用户场景一 ...

  7. java深入的单例模式

    在GoF的23种设计模式中,单例模式是比较简单的一种.然而,有时候越是简单的东西越容易出现问题.下面就单例设计模式详细的探讨一下.   所谓单例模式,简单来说,就是在整个应用中保证只有一个类的实例存在 ...

  8. Qt QImage与OpenCV Mat转换

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51029382 应一个朋友的要求,整理总 ...

  9. Ubuntu 15.10配置OpenCV

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50635705 1 安装前准备 安装以下 ...

  10. nyoj 38 简单并查集的应用&最小生成树

    #include<stdio.h> #include<stdlib.h> #define inf 0x3fffffff #define N 600 struct node { ...