洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
感觉自己学的一直是假的矩阵快速幂。。。
辅助矩阵为
$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$
#include<cstdio>
#include<cstring>
#define int long long
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++)
using namespace std;
const int MAXN=;
const int mod=1e9+;
char buf[<<],*p1=buf,*p2=buf;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,k;
struct Matrix
{
int m[MAXN][MAXN];
Matrix operator * (const Matrix a)const
{
Matrix ans={};
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
ans.m[i][j]=(ans.m[i][j]+(m[i][k]*a.m[k][j])%mod)%mod;
return ans;
}
Matrix pow(int p)
{
Matrix ans,a=(*this);
for(int i=;i<=n;i++) ans.m[i][i]=;
while(p)
{
if(p&) ans=ans*a;
a=a*a;
// a.print();
p>>=;
}
return ans;
}
void print()
{
for(int i=;i<=n;i++,puts(""))
for(int j=;j<=n;j++)
printf("%d ",m[i][j]);
printf("*******************\n");
}
};
main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
k=read();n=;
Matrix temp,ans;
temp.m[][]=;temp.m[][]=;
temp.m[][]=;temp.m[][]=;
ans.m[][]=;ans.m[][]=;
ans.m[][]=;ans.m[][]=;
temp=temp.pow(k);
ans=ans*temp;
printf("%d",ans.m[][]);
return ;
}
洛谷P1962 斐波那契数列(矩阵快速幂)的更多相关文章
- 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质
P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
随机推荐
- CSS 弹性盒
图片新窗口打开浏览
- OnLineML一:关于Jubatus 的简介...
一:简介:原文链接:jubat.us/en/ xuwenq.iteye.com/blog/1702746 Jubatus http://jubat.us/en/overview.html 是一个面向 ...
- 模拟试题A
模拟试题A 一.单项选择题(2′*12=24′) 1.下面各种坐标变换中,会产生变换前后维度的改变的是( ) A)建模变换 B)观察变换 C)投影变换 D)视口变换 2.下列描述深度缓冲消隐算法的特点 ...
- MyBatis 基础入门
MyBatis 是一个半自动化的持久层的框架,能让开发者专注SQL本身 JDBC 连接数据库的硬编码问题,通过config,mapper配置文件解决 Mybatis开发需要关注的文件 l POJO类( ...
- 【udacity】机器学习-回归
Evernote Export 1.什么是回归? regression 在监督学习中,包括了输入和输出的样本,在此基础上,我们能够通过新的输入来表示结果,映射到输出 输出包含了离散输出和连续输出 2. ...
- Fiddler4抓包工具使用教程
本文参考自http://blog.csdn.net/ohmygirl/article/details/17846199,纯属读书笔记,加深记忆 1.抓包工具有很多,为什么要使用Fiddler呢?原因如 ...
- SQL 到 NOSQL 的思维转变
转自:http://blogread.cn/it/article/3130?f=wb SQL 到 NOSQL 的思维转变 NOSQL系统一般都会宣传一个特性,那就是性能好,然后为什么呢?关系型数据库发 ...
- UVALive-8138 Number Generator 概率dp+优化
题目链接:https://cn.vjudge.net/problem/UVALive-8138 题意 有一个随机数生成器,输出1-n的整数. 现在已经输出了k个数,问再取几个数才能使取出的所有数的个数 ...
- C# 常用字符串加密解密方法
using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Sec ...
- Centos6下创建Centos6基础镜像
在centos6下可以使用官方仓库拉取一个指定系统类型跟tag的镜像到本地 [root@localhost ~]# docker pull centos:6.8 6.8: Pulling from c ...