Two shortest

Time Limit: 500ms
Memory Limit: 4096KB

This problem will be judged on SGU. Original ID: 185
64-bit integer IO format: %I64d      Java class name: Solution

 
Yesterday Vasya and Petya quarreled badly, and now they don't want to see each other on their way to school. The problem is that they live in one and the same house, leave the house at the same time and go at the same speed by the shortest road. Neither of them wants to change their principles, that is why they want to find two separate shortest routes, which won't make them go along one road, but still they can meet at any junction. They ask you to help them. They number all the junctions with numbers from 1 to N (home and school are also considered as junctions). So their house has the number 1 and the school has the number N, each road connects two junctions exactly, and there cannot be several roads between any two junctions.

 

Input

The first line contains two integer numbers N and M (2<=N<=400), where M is the number of roads Petya and Vasya noticed. Each of the following M lines contains 3 integers: X, Y and L (1<=X, Y<=N, 1<=L<=10000), where X and Y - numbers of junctions, connected by the road and L is the length of the road.

 

Output

Write to the first line numbers of the junctions in the way they passed them on the first route. Write to the second line numbers of the junctions in the way they passed them on the second route. If it is impossible to help guys, then output "No solution".

 

Sample Input

Sample test(s)
Input
 
 
6 8
1 2 1
3 2 1
3 4 1
1 3 2
4 2 2
4 5 1
5 6 1
4 6 2
 
 
Output
 
 
1 3 4 5 6
1 2 4 6
 
 

Source

 
解题:妈拉个巴子,写了三遍才过。。
 
 #include <bits/stdc++.h>
#define pii pair<int,int>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = ;
struct arc {
int to,w,next;
arc(int x = ,int y = ,int z = -) {
to = x;
w = y;
next = z;
}
} e[maxn*maxn*];
int hd[maxn],hd2[maxn],d[maxn],cur[maxn],tot,n,m;
void add(int *head,int u,int v,int w) {
e[tot] = arc(v,w,head[u]);
head[u] = tot++;
}
void dijkstra() {
priority_queue<pii,vector<pii>,greater<pii > >q;
memset(d,0x3f,sizeof d);
bool done[maxn] = {false};
q.push(pii(d[] = ,));
while(!q.empty()) {
int u = q.top().second;
q.pop();
if(done[u]) continue;
done[u] = true;
for(int i = hd[u]; ~i; i = e[i].next) {
if(d[e[i].to] > d[u] + e[i].w) {
d[e[i].to] = d[u] + e[i].w;
q.push(pii(d[e[i].to],e[i].to));
}
}
}
}
bool bfs() {
queue<int>q;
memset(d,-,sizeof d);
d[] = ;
q.push();
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = hd2[u]; ~i; i = e[i].next) {
if(e[i].w && d[e[i].to] == -) {
d[e[i].to] = d[u] + ;
q.push(e[i].to);
}
}
}
return d[n] > -;
}
int dfs(int u,int low) {
if(u == n) return low;
int tmp = ,a;
for(int &i = cur[u]; ~i; i = e[i].next) {
if(e[i].w && d[e[i].to] == d[u]+&&(a=dfs(e[i].to,min(low,e[i].w)))) {
e[i].w -= a;
e[i^].w += a;
tmp += a;
low -= a;
if(!low) break;
}
}
if(!tmp) d[u] = -;
return tmp;
}
int dinic() {
int ret = ;
while(bfs()) {
memcpy(cur,hd2,sizeof cur);
ret += dfs(,INF);
}
return ret;
}
void solve(int u) {
if(u == ) printf("%d",u);
else printf(" %d",u);
if(u == n) {
putchar('\n');
return;
}
for(int i = hd2[u]; ~i; i = e[i].next) {
if((~i&) && !e[i].w) {
e[i].w = ;
solve(e[i].to);
break;
}
}
}
int main() {
int u,v,w;
while(~scanf("%d%d",&n,&m)) {
memset(hd,-,sizeof hd);
memset(hd2,-,sizeof hd2);
for(int i = tot = ; i < m; ++i) {
scanf("%d%d%d",&u,&v,&w);
add(hd,u,v,w);
add(hd,v,u,w);
}
dijkstra();
for(int i = ; i <= n; ++i) {
for(int j = hd[i]; ~j; j = e[j].next) {
if(d[e[j].to] == d[i] + e[j].w) {
add(hd2,i,e[j].to,);
add(hd2,e[j].to,i,);
}
}
}
if(dinic() >= ) {
solve();
solve();
} else puts("No solution");
}
return ;
}

SGU 185 Two shortest的更多相关文章

  1. SGU 185 Two shortest 最短路+最大流

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=21068 Yesterday Vasya and Petya qua ...

  2. SGU 185 Two shortest ★(最短路+网络流)

    [题意]给出一个图,求 1 -> n的2条 没有重边的最短路. 真◆神题--卡内存卡得我一脸血= =-- [思路] 一开始我的想法是两遍Dijkstra做一次删一次边不就行了么你们还又Dijks ...

  3. SGU 185.Two shortest (最小费用最大流)

    时间限制:0.25s 空间限制:4M 题意: 在n(n<=400)个点的图中,找到并输出两条不想交的最短路.不存在输出“No sulotion”: Solution: 最小费用最大流 建图与po ...

  4. sgu 185 最短路建网络流

    题目:给出一个图,从图中找出两条最短路,使得边不重复. 分析:既然是最短路,那么,两条路径上的所有节点的入边(s,x).出边(x,e)必定是最优的,即 dis[x] = dis[s]+edge_dis ...

  5. [转] POJ图论入门

    最短路问题此类问题类型不多,变形较少 POJ 2449 Remmarguts' Date(中等)http://acm.pku.edu.cn/JudgeOnline/problem?id=2449题意: ...

  6. Soj题目分类

    -----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...

  7. 图论常用算法之一 POJ图论题集【转载】

    POJ图论分类[转] 一个很不错的图论分类,非常感谢原版的作者!!!在这里分享给大家,爱好图论的ACMer不寂寞了... (很抱歉没有找到此题集整理的原创作者,感谢知情的朋友给个原创链接) POJ:h ...

  8. SGU 分类

    http://acm.sgu.ru/problemset.php?contest=0&volume=1 101 Domino 欧拉路 102 Coprime 枚举/数学方法 103 Traff ...

  9. Mango Weekly Training Round #6 解题报告

    比赛链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=41856#overview A.多种解法.可以dfs倒序染色,如mathlove ...

随机推荐

  1. Chrome(谷歌浏览器) 程序开发32个经常使用插件

    Chrome(谷歌浏览器) 程序开发32个经常使用插件                   谷歌浏览器(Chrome)在2008年底才公布.但非常快它已成为火狐(Firefox)有力竞争对手. 之前. ...

  2. 怎样使用Eclipse PDT调试PHP程序

    本文主要介绍的是怎样用eclipse pdt调试PHP 代码. 1. 下载eclipse.从官网上找就能够了,并确认当前系统中有java环境,即jdk和jre. 2. 安装pdt了,採用的是在线安装. ...

  3. POJ3463 Sightseeing

    题目大意:求两点间最短路与长度为最短路长度+1的路径的条数之和. 方法1:最短路径+DP 首先求出ST间最短路径,然后根据递归式记忆化搜索(因此还要构造反向图). 我们知道到达终点的路径长度最长为ma ...

  4. Spring SSM 框架

    IDEA 整合 SSM 框架学习 http://www.cnblogs.com/wmyskxz/p/8916365.html 认识 Spring 框架 更多详情请点击这里:这里 Spring 框架是 ...

  5. 2.Ventuz Designer常用工具介绍

    Ventuz Designer常用工具介绍 1.  打开Ventuz Designer 图1.1 2.  Ventuz Designer第一个界面 图2.1 Recent Projects:最近创建的 ...

  6. 我的wordpress在Nginx的配置

    lnmp生成过程 You select the exist rewrite rule:/usr/local/nginx/conf/wordpress.conf Gracefully shutting ...

  7. SQL数据库链接代码的解释

    SqlConnection conn = new SqlConnection(); conn.ConnectionString = "Data Source=(local);Initial ...

  8. python安装Django需要环境

    Django==1.10.3 -e git+https://github.com/duoshuo/duoshuo-python-sdk.git#egg=duoshuo-python-sdk djang ...

  9. QT线程使用收集示例

    关于多线程问题: Qt和Boost做跨平台的线程封装,OpenMP主要做并行计算,让不精通多线程的人也能高效地利用CPU的计算能力.个人倾向于用boost.thread, boost.mpi.   一 ...

  10. tomcat 使用常见问题

    tomcat 下目录的介绍: 参考地址: http://blog.csdn.net/u013132035/article/details/54949593 参考书籍:tomcat权威指南 (1) 非w ...