https://www.luogu.org/problem/show?pid=2822

题目描述

组合数C_n^mC​n​m​​表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。根据组合数的定 义,我们可以给出计算组合数的一般公式:

C_n^m=\frac{n!}{m!(n - m)!}C​n​m​​=​m!(n−m)!​​n!​​

其中n! = 1 × 2 × · · · × n

小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足C_i^jC​i​j​​是k的倍数。

输入输出格式

输入格式:

第一行有两个整数t,k,其中t代表该测试点总共有多少组测试数据,k的意义见 【问题描述】。

接下来t行每行两个整数n,m,其中n,m的意义见【问题描述】。

输出格式:

t行,每行一个整数代表答案。

输入输出样例

输入样例#1:

1 2
3 3
输出样例#1:

1
输入样例#2:

2 5
4 5
6 7
输出样例#2:

0
7

说明

【样例1说明】

在所有可能的情况中,只有C_2^1 = 2C​2​1​​=2是2的倍数。

【子任务】

 #include <cstdio>

 inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int N();
int t,k,fac[N];
int C[N][N],sum[N][N]; int Presist()
{
read(t),read(k);
for(int i=; i<=; ++i) C[i][]=C[i][i]=%k;
for(int i=; i<=; ++i)
for(int j=; j<i; ++j)
C[i][j]=(C[i-][j-]%k+C[i-][j]%k)%k;
for(int i=; i<=; ++i)
for(int j=; j<=; ++j)
sum[i][j]=sum[i-][j]+sum[i][j-]-sum[i-][j-]+(!C[i][j]&&i>=j);
for(int n,m; t--; )
{
read(n),read(m);
printf("%d\n",sum[n][m]);
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

洛谷——P2822 组合数问题的更多相关文章

  1. 洛谷P2822 组合数问题(题解)

    https://www.luogu.org/problemnew/show/P2822(题目传送) 先了解一下有关组合数的公式:(m在上,n在下) 组合数通项公式:C(n,m)=n!/[m!(n-m) ...

  2. 洛谷P2822 组合数问题

    输入输出样例 输入样例#1: 1 2 3 3 输出样例#1: 1 输入样例#2: 2 5 4 5 6 7 输出样例#2: 0 7 说明 [样例1说明] 在所有可能的情况中,只有C_2^1 = 2C21 ...

  3. 洛谷P2822组合数问题

    传送门啦 15分暴力,但看题解说暴力分有30分. 就是找到公式,然后套公式.. #include <iostream> #include <cstdio> #include & ...

  4. 洛谷 P2822 组合数问题

    题目描述 组合数C_n^mC​n​m​​表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的 ...

  5. 【洛谷P2822 组合数问题】

    题目连接 #include<iostream> #include<cstring> #include<cstdio> #include<cctype> ...

  6. 洛谷P2822 组合数问题 杨辉三角

    没想到这道题竟然这么水- 我们发现m,n都非常小,完全可以O(nm)O(nm)O(nm)预处理出stripe数组,即代表(i,j)(i,j)(i,j) 及其向上的一列的个数,然后进行递推即可. #in ...

  7. 洛谷 P2822 组合数问题 题解

    今天又考试了...... 这是T2. Analysis 考试时想了一个判断质因数个数+打表的神奇方法,但没在每次输入n,m时把ans置0,50分滚粗. 看了题解才发现原来是杨辉三角+二维前缀和,果然还 ...

  8. 【题解】洛谷P2822 [NOIP2016TG ]组合数问题 (二维前缀和+组合数)

    洛谷P2822:https://www.luogu.org/problemnew/show/P2822 思路 由于n和m都多达2000 所以暴力肯定是会WA的 因为整个组合数是不会变的 所以我们想到存 ...

  9. 【洛谷p2822】组合数问题

    (突然想          ??忘掉了wdt) (行吧那就%%%hmr) 组合数问题[传送门] (因为清明要出去培训数学知识所以一直在做数论) 组合数<=>杨辉三角形(从wz那拐来的技能 ...

随机推荐

  1. CF49A Sleuth

    CF49A Sleuth 题目描述 Vasya plays the sleuth with his friends. The rules of the game are as follows: tho ...

  2. SDWebImage源代码解析(二)

    上一篇:SDWebImage源代码解析(一) 2.缓存 为了降低网络流量的消耗.我们都希望下载下来的图片缓存到本地.下次再去获取同一张图片时.能够直接从本地获取,而不再从远程server获取.这样做的 ...

  3. android setCookie 免登录

    CookieSyncManager.createInstance(getActivity()); CookieManager cookieManager = CookieManager.getInst ...

  4. 精简Linux文件路径

    精简Linux的文件路径: ..回退的功能 .留在当前文件夹 //仅仅保留一个/ abc/..要返回. 报错 删除最后一个/ 主要思路: 用栈记录路径的起始位置,讨论/后的不同情况就可以: #incl ...

  5. 利用POI操作不同版本号word文档中的图片以及创建word文档

    我们都知道要想利用java对office操作最经常使用的技术就应该是POI了,在这里本人就不多说到底POI是什么和怎么用了. 先说本人遇到的问题,不同于利用POI去向word文档以及excel文档去写 ...

  6. maven+springMVC+mybatis 搭建过程

    1.创建maven web 项目 maven 创建web应用命令: mvn archetype:generate -DgroupId=[com.rom]包名 -DartifactId=[cpsrom] ...

  7. EasyUI----动态拼接EasyUI控件

    近期在做的项目中.依据查询到的数据,然后动态的拼接easyUI的控件显示到界面上. 在数据库中,有一个命令的表,另一个參数的表,先到命令的表中去查询这一个设备有哪些命令,比方说.摄像头有一个转动的命令 ...

  8. [Golang] 从零開始写Socket Server(3): 对长、短连接的处理策略(模拟心跳)

    通过前两章,我们成功是写出了一套凑合能用的Server和Client,并在二者之间实现了通过协议交流.这么一来,一个简易的socket通讯框架已经初具雏形了,那么我们接下来做的.就是想办法让这个框架更 ...

  9. UVA - 1642 Magical GCD 数学

                                  Magical GCD The Magical GCD of a nonempty sequence of positive integer ...

  10. NEUOJ 1702 撩妹全靠魅力值 (三维偏序)

    题目链接:http://acm.neu.edu.cn/hustoj/problem.php?id=1702 题目大意:就是问每个人三个属性同时不低于另外几个人....人不分先后 经典的三维偏序问题 解 ...