洛谷——P2822 组合数问题
https://www.luogu.org/problem/show?pid=2822
题目描述
组合数C_n^mCnm表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。根据组合数的定 义,我们可以给出计算组合数的一般公式:
C_n^m=\frac{n!}{m!(n - m)!}Cnm=m!(n−m)!n!
其中n! = 1 × 2 × · · · × n
小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足C_i^jCij是k的倍数。
输入输出格式
输入格式:
第一行有两个整数t,k,其中t代表该测试点总共有多少组测试数据,k的意义见 【问题描述】。
接下来t行每行两个整数n,m,其中n,m的意义见【问题描述】。
输出格式:
t行,每行一个整数代表答案。
输入输出样例
1 2
3 3
1
2 5
4 5
6 7
0
7
说明
【样例1说明】
在所有可能的情况中,只有C_2^1 = 2C21=2是2的倍数。
【子任务】

#include <cstdio> inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int N();
int t,k,fac[N];
int C[N][N],sum[N][N]; int Presist()
{
read(t),read(k);
for(int i=; i<=; ++i) C[i][]=C[i][i]=%k;
for(int i=; i<=; ++i)
for(int j=; j<i; ++j)
C[i][j]=(C[i-][j-]%k+C[i-][j]%k)%k;
for(int i=; i<=; ++i)
for(int j=; j<=; ++j)
sum[i][j]=sum[i-][j]+sum[i][j-]-sum[i-][j-]+(!C[i][j]&&i>=j);
for(int n,m; t--; )
{
read(n),read(m);
printf("%d\n",sum[n][m]);
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}
洛谷——P2822 组合数问题的更多相关文章
- 洛谷P2822 组合数问题(题解)
https://www.luogu.org/problemnew/show/P2822(题目传送) 先了解一下有关组合数的公式:(m在上,n在下) 组合数通项公式:C(n,m)=n!/[m!(n-m) ...
- 洛谷P2822 组合数问题
输入输出样例 输入样例#1: 1 2 3 3 输出样例#1: 1 输入样例#2: 2 5 4 5 6 7 输出样例#2: 0 7 说明 [样例1说明] 在所有可能的情况中,只有C_2^1 = 2C21 ...
- 洛谷P2822组合数问题
传送门啦 15分暴力,但看题解说暴力分有30分. 就是找到公式,然后套公式.. #include <iostream> #include <cstdio> #include & ...
- 洛谷 P2822 组合数问题
题目描述 组合数C_n^mCnm表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的 ...
- 【洛谷P2822 组合数问题】
题目连接 #include<iostream> #include<cstring> #include<cstdio> #include<cctype> ...
- 洛谷P2822 组合数问题 杨辉三角
没想到这道题竟然这么水- 我们发现m,n都非常小,完全可以O(nm)O(nm)O(nm)预处理出stripe数组,即代表(i,j)(i,j)(i,j) 及其向上的一列的个数,然后进行递推即可. #in ...
- 洛谷 P2822 组合数问题 题解
今天又考试了...... 这是T2. Analysis 考试时想了一个判断质因数个数+打表的神奇方法,但没在每次输入n,m时把ans置0,50分滚粗. 看了题解才发现原来是杨辉三角+二维前缀和,果然还 ...
- 【题解】洛谷P2822 [NOIP2016TG ]组合数问题 (二维前缀和+组合数)
洛谷P2822:https://www.luogu.org/problemnew/show/P2822 思路 由于n和m都多达2000 所以暴力肯定是会WA的 因为整个组合数是不会变的 所以我们想到存 ...
- 【洛谷p2822】组合数问题
(突然想 ??忘掉了wdt) (行吧那就%%%hmr) 组合数问题[传送门] (因为清明要出去培训数学知识所以一直在做数论) 组合数<=>杨辉三角形(从wz那拐来的技能 ...
随机推荐
- yii 正则验证
required : 必须值验证属性 [['字段名'],required,'requiredValue'=>'必填值','message'=>'提示信息']; #说明:CRequiredV ...
- JDBC 具体解释(1)
JDBC 具体解释(1) 在以java application server应用为主的平台是,JDBC的最高级应用是DataSource的实现,其他的JDO,webcache,hibe ...
- c#自己实现线程池功能(二)
介绍 在上一篇c#自己实现线程池功能(一)中,我们基本实现了一个能够执行的程序.而不能真正的称作线程池.因为是上篇中的代码有个致命的bug那就是没有任务是并非等待,而是疯狂的进行while循环,并试图 ...
- poj--1383--Labyrinth(树的直径)
Labyrinth Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 4062 Accepted: 1529 Descrip ...
- oracle手工生成AWR报告方法
AWR(Automatic Workload Repository)报告是我们进行日常数据库性能评定.问题SQL发现的重要手段.熟练掌握AWR报告,是做好开发.运维DBA工作的重要基本功. AWR报告 ...
- Java类的根Object
一.Object类介绍 Object全名java.lang.Object,java.lang包在使用的时候无需显示导入,编译时由编译器自动导入.Object类是类层次结构的根,Java中所有的类从根本 ...
- matlab基本语法
MATLAB基本语法 点乘运算 , 常与其他运算符 点乘运算,常与其他运算符联合使用(如.\) 矩阵生成 矩阵生成 向量生成或子阵提取本节将会介绍一些MATLAB的基本语法的使用. 持续更新... 在 ...
- POJ 1155 树形DP
题意:电视台发送信号给很多用户,每个用户有愿意出的钱,电视台经过的路线都有一定费用,求电视台不损失的情况下最多给多少用户发送信号. 转自:http://www.cnblogs.com/andre050 ...
- Spring《五》集合的注入方式
List.Set.Map.Properties 1.List <property name="msg"> <list> <value>gf< ...
- 在C#中运行PowerShell
C#中运行PowerShell需要用到System.Management.Automation.dll.在Visual Studio中可以通过NuGet添加引用,package名字为"Sys ...