虽然做起来有一点裸……但是就是想不到啊……

首先令 $d_i=p_i\oplus p_{i-1}$,那么 $d_i$ 都是 $S$ 中的数,$a_i=d_i\oplus d_{i-1}\oplus \cdots\oplus d_2$。也就是每个数都能被表示成 $S$ 的某个子集的异或和。

要用 $S$ 表示出 $1$ 到 $2^x-1$ 的所有数(不用考虑 $0$,因为每个数是可以重复用的,可以 $S_i\oplus S_i=0$)。怎么求出最大的 $x$?

其实就是建出线性基,然后最小的没有数的位就是 $x$ 了。为什么?当 $0$ 到 $x-1$ 都有数时是可以表示出所有 $0$ 到 $2^x-1$ 的,而当 $x$ 没有数时无法填第 $x$ 位。

(想用严谨一点的语言的……然而实力不允许……)

然后,求出 $x$ 后如何构造排列?

首先有最原始的想法:DFS,每次 $O(n)$ 枚举下一个数是这一个数异或上啥。肯定不可能过。

然后发现只需要保留线性无关的最大子集(可以在建线性基的过程中就完成),此时肯定还是能表示出全部的数(线性无关的定义)。同时数的个数降到了 $O(\log)$。

看起来还是不能过,但是……它的复杂度是对的!为什么?

DFS 过程中要判断 $vis[x\oplus S[i]]$,这就是在原始想法中耗费大量无用时间的原因。

而出现这样的情况,当且仅当出现了区间异或和为 $0$ 的情况。

但是对于这个线性无关的子集,会出现这样的情况,当且仅当当前枚举的 $S_i$ 等于目前的某一个后缀异或和。因为既然线性无关,所以所有不可重子集的异或和都不为 $0$。

由于 $S_i$ 只有 $O(\log)$ 种,所以也只会有 $O(\log)$ 次无法递归。

那么复杂度就对了。$O(n\log)$。下面的代码实现比较丑,所以复杂度似乎是两个 $\log$。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,s[maxn],lb[],vec[],vl,ans,seq[maxn],sl;
bool vis[maxn],ok;
void insert(int x){
int tmp=x;
ROF(i,,) if((x>>i)&){
if(!lb[i]){
lb[i]=x;
vec[++vl]=tmp;
return;
}
else x^=lb[i];
}
}
bool check(int x){
FOR(i,,x-) if(!lb[i]) return false;
return true;
}
void dfs(int x){
vis[x]=true;
seq[++sl]=x;
if(sl==(<<ans)){ok=true;return;}
FOR(i,,vl) if(!vis[x^vec[i]]){
dfs(x^vec[i]);
if(ok) return;
}
vis[x]=false;
sl--;
}
int main(){
n=read();
FOR(i,,n) s[i]=read();
ROF(_,,){
MEM(lb,);MEM(vec,);vl=;
FOR(i,,n) if(s[i]<=(<<_)-) insert(s[i]);
if(check(_)){ans=_;break;}
}
printf("%d\n",ans);
dfs();
FOR(i,,sl) printf("%d ",seq[i]);
}

CF1163E Magical Permutation(线性基,构造)的更多相关文章

  1. Codeforces 1163E Magical Permutation [线性基,构造]

    codeforces 思路 我顺着图论的标签点进去的,却没想到-- 可以发现排列内每一个数都是集合里的数异或出来的. 考虑答案的上界是多少.如果能用小于\(2^k\)的数构造出\([0,2^k-1]\ ...

  2. CF1163E Magical Permutation【线性基,构造】

    题目描述:输入一个大小为\(n\)的正整数集合\(S\),求最大的\(x\),使得能构造一个\(0\)到\(2^x-1\)的排列\(p\),满足\(p_i\oplus p_{i+1}\in S\) 数 ...

  3. 51Nod1577 异或凑数 线性基 构造

    国际惯例的题面:异或凑出一个数,显然是线性基了.显然我们能把区间[l,r]的数全都扔进一个线性基,然后试着插入w,如果能插入,则说明w不能被这些数线性表出,那么就要输出"NO"了. ...

  4. CF1163E Magical Permutation

    题意:给定集合,求一个最大的x,使得存在一个0 ~ 2x - 1的排列,满足每相邻的两个数的异或值都在S中出现过.Si <= 2e5 解:若有a,b,c,令S1 = a ^ b, S2 = b ...

  5. BZOJ3569: DZY Loves Chinese II(线性基构造)

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生.   今Dzy有一魞歄图, ...

  6. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  7. Codeforces.472F.Design Tutorial: Change the Goal(构造 线性基 高斯消元)

    题目链接 \(Description\) 给定两个长为\(n\)的数组\(x_i,y_i\).每次你可以选定\(i,j\),令\(x_i=x_i\ \mathbb{xor}\ x_j\)(\(i,j\ ...

  8. 【HDU 3949】 XOR (线性基,高斯消元)

    XOR Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. 高斯消元 & 线性基【学习笔记】

    高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017- ...

随机推荐

  1. 十、自定义ThreadPoolExecutor线程池

    自定义ThreadPoolExecutor线程池 自定义线程池需要遵循的规则 [1]线程池大小的设置 1.计算密集型: 顾名思义就是应用需要非常多的CPU计算资源,在多核CPU时代,我们要让每一个CP ...

  2. 基于仿射的非刚体配准方法(i) 法向

    为啥闲呢,因为work干完了. 为啥补档呢,因为有新work了. 呃,因为新work让人自闭. 我现在干完了两部分.一是把最近邻的部分迁移过来. 二是求法向. 首先是给三个点,就能确定平面——因为是三 ...

  3. Vue.js 源码分析(二十一) 指令篇 v-pre指令详解

    该指令会跳过所在元素和它的子元素的编译过程,也就是把这个节点及其子节点当作一个静态节点来处理,例如: <!DOCTYPE html> <html lang="en" ...

  4. thymeleaf入门

    controller层添加实体 html <!DOCTYPE html> <html xmlns:th="http://www.thymeleaf.org"> ...

  5. 缘起 Dubbo ,讲讲 Spring XML Schema 扩展机制

    背景 在 Dubbo 中,可以使用 XML 配置相关信息,也可以用来引入服务或者导出服务.配置完成,启动工程,Spring 会读取配置文件,生成注入 相关 Bean.那 Dubbo 如何实现自定义 X ...

  6. Java向服务器上传图片

    在比较绚丽多彩的网站或者业务逻辑比较丰富的程序设计过程中,图片的相关操作时必不少的,尤其时图片的上传.还没有彻底摆脱纸质办公可能需要将纸质的文件备份上传,网站的建设可能需要上传用户头像.图片描述等等, ...

  7. Restful API接口规范

    1. 域名 应该尽量将API部署在专用域名之下. https://api.example.com 如果确定API很简单,不会有进一步扩展,可以考虑放在主域名下. https://example.org ...

  8. ASP.NET Core系列:JWT身份认证

    1. JWT概述 JSON Web Token(JWT)是目前流行的跨域身份验证解决方案. JWT的官网地址:https://jwt.io JWT的实现方式是将用户信息存储在客户端,服务端不进行保存. ...

  9. CTF必备技能丨Linux Pwn入门教程——栈溢出基础

    这是一套Linux Pwn入门教程系列,作者依据i春秋Pwn入门课程中的技术分类,并结合近几年赛事中出现的一些题目和文章整理出一份相对完整的Linux Pwn教程. 课程回顾>>Linux ...

  10. Unity导出Gradle工程给Android Studio使用

    1 Unity导出Gradle项目 Unity打包时Build System选择Gradle,勾选Export Project 2 Android Studio导入Unity导出的Gradle项目 打 ...