[LeetCode] 919. Complete Binary Tree Inserter 完全二叉树插入器
A *complete* binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.
Write a data structure CBTInserter
that is initialized with a complete binary tree and supports the following operations:
CBTInserter(TreeNode root)
initializes the data structure on a given tree with head noderoot
;CBTInserter.insert(int v)
will insert aTreeNode
into the tree with valuenode.val = v
so that the tree remains complete, and returns the value of the parent of the insertedTreeNode
;CBTInserter.get_root()
will return the head node of the tree.
Example 1:
Input: inputs = ["CBTInserter","insert","get_root"], inputs = [[[1]],[2],[]]
Output: [null,1,[1,2]]
Example 2:
Input: inputs = ["CBTInserter","insert","insert","get_root"], inputs = [[[1,2,3,4,5,6]],[7],[8],[]]
Output: [null,3,4,[1,2,3,4,5,6,7,8]]
Note:
- The initial given tree is complete and contains between
1
and1000
nodes. CBTInserter.insert
is called at most10000
times per test case.- Every value of a given or inserted node is between
0
and5000
.
这道题说是让实现一个完全二叉树的插入器的类,之前也做过关于完全二叉树的题 [Count Complete Tree Nodes](http://www.cnblogs.com/grandyang/p/4567827.html)。首先需要搞清楚的是完全二叉树的定义,即对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,换句话说,完全二叉树从根结点到倒数第二层满足完美二叉树,最后一层可以不完全填充,其叶子结点都靠左对齐。由于插入操作要找到最后一层的第一个空缺的位置,所以很自然的就想到了使用层序遍历的方法,由于插入函数返回的是插入位置的父结点,所以在层序遍历的时候,只要遇到某个结点的左子结点或者右子结点不存在,则跳出循环,则这个残缺的父结点刚好就在队列的首位置。那么在插入函数时,只要取出这个残缺的父结点,判断若其左子结点不存在,说明新的结点要连接在左子结点上,否则将新的结点连接在右子结点上,并把此时的左右子结点都存入队列中,并将之前的队首元素移除队列即可,参见代码如下:
解法一:
class CBTInserter {
public:
CBTInserter(TreeNode* root) {
tree_root = root;
q.push(root);
while (!q.empty()) {
auto t = q.front();
if (!t->left || !t->right) break;
q.push(t->left);
q.push(t->right);
q.pop();
}
}
int insert(int v) {
TreeNode *node = new TreeNode(v);
auto t = q.front();
if (!t->left) t->left = node;
else {
t->right = node;
q.push(t->left);
q.push(t->right);
q.pop();
}
return t->val;
}
TreeNode* get_root() {
return tree_root;
}
private:
TreeNode *tree_root;
queue<TreeNode*> q;
};
下面这种解法缩短了建树的时间,但是极大的增加了插入函数的运行时间,因为每插入一个结点,都要从头开始再遍历一次,并不是很高效,可以当作一种发散思维吧,参见代码如下:
解法二:
class CBTInserter {
public:
CBTInserter(TreeNode* root) {
tree_root = root;
}
int insert(int v) {
queue<TreeNode*> q{{tree_root}};
TreeNode *node = new TreeNode(v);
while (!q.empty()) {
auto t = q.front(); q.pop();
if (t->left) q.push(t->left);
else {
t->left = node;
return t->val;
}
if (t->right) q.push(t->right);
else {
t->right = node;
return t->val;
}
}
return 0;
}
TreeNode* get_root() {
return tree_root;
}
private:
TreeNode *tree_root;
};
再来看一种不使用队列的解法,因为队列总是要遍历,比较麻烦,如果使用数组来按层序遍历的顺序保存这个完全二叉树的结点,将会变得十分的简单。而且有个最大的好处是,可以直接通过坐标定位到其父结点的位置,通过 (i-1)/2 来找到父结点,这样的话就完美的解决了插入函数要求返回父结点的要求,而且通过判断当前完整二叉树结点个数的奇偶,可以得知最后一个结点是在左子结点上还是右子结点上,这样就可以直接将新加入的结点连到到父结点的正确的子结点位置,参见代码如下:
解法三:
class CBTInserter {
public:
CBTInserter(TreeNode* root) {
tree.push_back(root);
for (int i = 0; i < tree.size(); ++i) {
if (tree[i]->left) tree.push_back(tree[i]->left);
if (tree[i]->right) tree.push_back(tree[i]->right);
}
}
int insert(int v) {
TreeNode *node = new TreeNode(v);
int n = tree.size();
tree.push_back(node);
if (n % 2 == 1) tree[(n - 1) / 2]->left = node;
else tree[(n - 1) / 2]->right = node;
return tree[(n - 1) / 2]->val;
}
TreeNode* get_root() {
return tree[0];
}
private:
vector<TreeNode*> tree;
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/919
类似题目:
参考资料:
https://leetcode.com/problems/complete-binary-tree-inserter/
[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)
[LeetCode] 919. Complete Binary Tree Inserter 完全二叉树插入器的更多相关文章
- LeetCode 919. Complete Binary Tree Inserter
原题链接在这里:https://leetcode.com/problems/complete-binary-tree-inserter/ 题目: A complete binary tree is a ...
- 【LeetCode】919. Complete Binary Tree Inserter 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址: https://leetcode. ...
- leetcode_919. Complete Binary Tree Inserter_完全二叉树插入
https://leetcode.com/problems/complete-binary-tree-inserter/ 给出树节点的定义和完全二叉树插入器类的定义,为这个类补全功能.完全二叉树的定义 ...
- [Swift]LeetCode919. 完全二叉树插入器 | Complete Binary Tree Inserter
A complete binary tree is a binary tree in which every level, except possibly the last, is completel ...
- PAT 1110 Complete Binary Tree[判断完全二叉树]
1110 Complete Binary Tree(25 分) Given a tree, you are supposed to tell if it is a complete binary tr ...
- leetcode_919. Complete Binary Tree Inserter
https://leetcode.com/problems/complete-binary-tree-inserter/ 设计一个CBTInserter,使用给定完全二叉树初始化.三个功能; CBTI ...
- PAT A1110 Complete Binary Tree (25 分)——完全二叉树,字符串转数字
Given a tree, you are supposed to tell if it is a complete binary tree. Input Specification: Each in ...
- [二叉树建树&完全二叉树判断] 1110. Complete Binary Tree (25)
1110. Complete Binary Tree (25) Given a tree, you are supposed to tell if it is a complete binary tr ...
- PAT甲级——1110 Complete Binary Tree (完全二叉树)
此文章同步发布在CSDN上:https://blog.csdn.net/weixin_44385565/article/details/90317830 1110 Complete Binary ...
随机推荐
- Windows7运行python3,提示缺少api-ms-win-crt-runtime-l1-1.0.dll
一.实验环境 1.Windows7x64_SP1 二.操作步骤 2.1 python官网下载python3.6后,安装.运行,提示如下错误: 2.2 解决方式 去微软官网下载安装:KB2999226补 ...
- WPF 隐藏式控件
没用Popup用的面板控件,全部代码使用xaml的触发器. 代码: <Grid> <DockPanel> <StackPanel Background=" Do ...
- LeetCode 1291. Sequential Digits
题目 class Solution { public: int ans[10005]; vector<int> sequentialDigits(int low, int high) { ...
- kafka中消费者消费消息之每个线程维护一个KafkaConsumer实例
1.首先启动自己的kafka集群哟. 启动zk: bin/zkServer.sh start conf/zoo.cfg. 验证zk是否启动成功: bin/zkServer.sh status conf ...
- 2018-9-30-win10-UWP-剪贴板-Clipboard
原文:2018-9-30-win10-UWP-剪贴板-Clipboard title author date CreateTime categories win10 UWP 剪贴板 Clipboard ...
- Winform中设置ZedGraph鼠标滚轮缩放的灵敏度以及设置滚轮缩放的方式(鼠标焦点为中心还是图形中心点)
场景 Winforn中设置ZedGraph曲线图的属性.坐标轴属性.刻度属性: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/10 ...
- jsonp格式前端发送和后台接受写法
jsonp是ajax提交的一种格式不会受跨域限制 一.前端发送 <button>11111</button> <script src="https://cdn. ...
- SharpGL之透视投影和摄像机
当三维体放在世界坐标系中后,由于显示器只能用二维图像显示三维休,因此必须要依赖投影来把三维体降低维数. 投影变换的目的就是定义了一个视景体,使得视景体外多余的部分不会显示. 投影包括透视投影(pers ...
- js 加密混淆工具
访问路径:https://www.sojson.com/javascriptobfuscator.html
- Google Analytics 学习笔记一 —— GA简介
GA的原理 网页页面添加GA跟踪代码,以"一像素"传递信息给服务器 hit(交互) --> sessions(会话) --> user(用户) 竞品对比 Firebas ...