在xcode中使用mlmodel模型,之前说的最简单的方法是将模型拖进工程中即可,xcode会自动生成有关模型的前向预测接口,这种方式非常简单,但是更新模型就很不方便。

今天说下另外一种通过URL加载mlmodel的方式。具体可以查阅apple开发者官方文档 https://developer.apple.com/documentation/coreml/mlmodel

流程如下:

1.提供mlmodel的文件所在路径model_path

NSString *model_path = "path_to/.mlmodel"

2.将NSSting类型转换为NSURL,并根据路径对模型进行编译(编译出的为.mlmodelc 文件, 这是一个临时文件,如果需要,可以将其保存到一个固定位置:https://developer.apple.com/documentation/coreml/core_ml_api/downloading_and_compiling_a_model_on_the_user_s_device

NSURL *url = [NSURL fileURLWithPath:model_path isDirectory:FALSE];
NSURL *compile_url = [MLModel compileModelAtURL:url error:&error];

3.根据编译后模型所在路径,加载模型,类型为MLModel

MLModel *compiled_model = [MLModel modelWithContentsOfURL:compile_url configuration:model_config error:&error];

4.需要注意的是采用动态编译方式,coreml只是提供了一种代理方式MLFeatureProvider,类似于C++中的虚函数。因此需要自己重写模型输入和获取模型输出的类接口(该类继承自MLFeatureProvider)。如下自己封装的MLModelInput和MLModelOutput类。MLModelInput类可以根据模型的输入名称InputName,传递data给模型。而MLModelOutput可以根据不同的输出名称featureName获取预测结果。

这个是头文件:

#import <Foundation/Foundation.h>
#import <CoreML/CoreML.h> NS_ASSUME_NONNULL_BEGIN /// Model Prediction Input Type
API_AVAILABLE(macos(10.13), ios(11.0), watchos(4.0), tvos(11.0))
@interface MLModelInput : NSObject<MLFeatureProvider> //the input name,default is image
@property (nonatomic, strong) NSString *inputName; //data as color (kCVPixelFormatType_32BGRA) image buffer
@property (readwrite, nonatomic) CVPixelBufferRef data; - (instancetype)init NS_UNAVAILABLE; - (instancetype)initWithData:(CVPixelBufferRef)data inputName:(NSString *)inputName; @end API_AVAILABLE(macos(10.13), ios(11.0), watchos(4.0), tvos(11.0))
@interface MLModelOutput : NSObject<MLFeatureProvider> //the output name, defalut is feature
@property (nonatomic, strong) NSString *outputName; // feature as multidimensional array of doubles
@property (readwrite, nonatomic) MLMultiArray *feature; - (instancetype)init NS_UNAVAILABLE; - (instancetype)initWithFeature:(MLMultiArray *)feature;
@end NS_ASSUME_NONNULL_END

这个是类方法实现的文件:

@implementation MLModelInput

- (instancetype)initWithData:(CVPixelBufferRef)data inputName:(nonnull NSString *)inputName {
if (self) {
_data = data;
_inputName = inputName;
}
return self;
} - (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[self.inputName]];
} - (nullable MLFeatureValue *)featureValueForName:(nonnull NSString *)featureName {
if ([featureName isEqualToString:self.inputName]) {
return [MLFeatureValue featureValueWithPixelBuffer:_data];
}
return nil;
} @end @implementation MLModelOutput - (instancetype)initWithFeature:(MLMultiArray *)feature{
if (self) {
_feature = feature;
_outputName = DefalutOutputValueName;
}
return self;
} - (NSSet<NSString *> *)featureNames{
return [NSSet setWithArray:@[self.outputName]];
} - (nullable MLFeatureValue *)featureValueForName:(nonnull NSString *)featureName {
if ([featureName isEqualToString:self.outputName]) {
return [MLFeatureValue featureValueWithMultiArray:_feature];
}
return nil;
} @end

5. 模型预测,获取预测结果。上面这两个类接口写完后,就可以整理输入数据为CvPixelBuffer,然后通过获取模型描述MLModelDescription得到输入名称,根据输入名称创建MLModelInput,预测,然后再根据MLModelOutput中的featureNames获取对应的预测输出数据,类型为MLMultiArray:

MLModelDescription *model_description = compiled_model.modelDescription;
NSDictionary *dict = model_description.inputDescriptionsByName;
NSArray<NSString *> *feature_names = [dict allKeys];
NSString *input_feature_name = feature_names[];
NSError *error;
MLModelInput *model_input = [[MLModelInput alloc] initWithData:buffer inputName:input_feature_name];
id<MLFeatureProvider> model_output = [compiled_model predictionFromFeatures:model_input options:option error:&error];
NSSet<NSString *> *out_feature_names = [model_output featureNames];
NSArray<NSString *> *name_list = [out_feature_names allObjects];
NSUInteger size = [name_list count];
std::vector<MLMultiArray *> feature_list;
for (NSUInteger i = 0; i < size; i++) {
NSString *name = [name_list objectAtIndex:i];
MLMultiArray *feature = [model_output featureValueForName:name].multiArrayValue;
feature_list.push_back(feature);
}

6.读取MLMultiArray中的预测结果数据做后续处理..

coreml之通过URL加载模型的更多相关文章

  1. tensorflowjs下载源文件到本地不能加载模型解决方案

    大多数情况(非源文件错误)下载源文件到本地不能加载模型,那么你可能需要搭建一个本地WEB服务器. 1.安装apache或ngnix,可以参照这个博客 2.强烈推荐一个Chrome插件Web Serve ...

  2. C#开发BIMFACE系列37 网页集成开发1:审图系统中加载模型或图纸

    系列目录     [已更新最新开发文章,点击查看详细] 在之前的<C#开发BIMFACE系列>中主要介绍了BIMFACE平台提供的服务端API接口的封装开发与测试过程. 服务端API测试通 ...

  3. C#开发BIMFACE系列50 Web网页中使用jQuery加载模型与图纸

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在前一篇博客<C#开发BIMFACE系列49 Web网页集成BIMFACE应用的技术方案>中介绍了目前市场主流 ...

  4. C#开发BIMFACE系列53 WinForm程序中使用CefSharp加载模型图纸1 简单应用

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在我的博客<C#开发BIMFACE系列52 CS客户端集成BIMFACE应用的技术方案>中介绍了多种集成BIM ...

  5. NeHe OpenGL教程 第三十一课:加载模型

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  6. URL加载系统----iOS工程师必须熟练掌握

    URL加载系统----iOS工程师必须熟练掌握     iOS根本离不开网络——不论是从服务端读写数据.向系统分发计算任务,还是从云端加载图片.音频.视频等.   当应用程序面临处理问题的抉择时,通常 ...

  7. tensorflow学习笔记2:c++程序静态链接tensorflow库加载模型文件

    首先需要搞定tensorflow c++库,搜了一遍没有找到现成的包,于是下载tensorflow的源码开始编译: tensorflow的contrib中有一个makefile项目,极大的简化的接下来 ...

  8. 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)

    1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...

  9. PyTorch保存模型与加载模型+Finetune预训练模型使用

    Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了da ...

随机推荐

  1. nginx二级域名反向代理

    nginx二级域名反向代理 添加两个开发测试的域名 test.xxx.com :8088 testmobile.xxx.com: 8089 内网地址:127.0.0.1 外网地址:127.0.0.1 ...

  2. WIN7快速打开hosts方法

    WIN7快速打开hosts方法 1直接运行C:\Windows\System32\drivers\etc\hosts 浏览选择notepad++打开即可 2打开notepad++打开 C:\Windo ...

  3. ICP&TPS:最近邻

    经过了一段时间的研bai究gei...终于可以偷得几天闲了. 这里来补个档. 无论是ICP还是TPS,缺乏锚点的前提下.你总是要通过找另一个曲面的最近的点来实现你的work beimat:点数*3,f ...

  4. C++:Copy & Reference Count

    浅拷贝.深拷贝 通常,我们会按如下方式书写拷贝构造函数: class LiF { public: LiF(int _lif = 0) : lif(_lif) {} // 默认构造函数 LiF(cons ...

  5. Dubbo从入门到实战:入门篇

    很多时候,其实我们使用这个技术的时候,可能都是因为项目需要,所以,我们就用了,但是,至于为什么我们需要用到这个技术,可能自身并不是很了解的,但是,其实了解技术的来由及背景知识,对于理解一项技术还是有帮 ...

  6. 短的 Guid 帮助类

    直接贴代码了: /// <summary> /// 短的 Guid 帮助类 /// </summary> public class ShortGuidHelper { #reg ...

  7. IIS Express 启用目录浏览 方法

    标签: iis / visual studio / C# / ASP.NET / .NET 522 今天刚刚使用visual studio 2013创建第一个hello world,结果就发现提示错误 ...

  8. C++中Lambda表达式转化为函数指针

    // ----------------------------------------------------------- auto combineCallbackLambda = [](GLdou ...

  9. 机器学习实战:基于Scikit-Learn和TensorFlow 第5章 支持向量机 学习笔记(硬间隔)

    数据挖掘作业,需要实现支持向量机进行分类,记录学习记录 环境:win10,Python 3.7.0 SVM的基本思想:在类别之间拟合可能的最宽的间距,也叫作最大间隔分类 书上提供的源代码绘制了两个图, ...

  10. MES系统如何帮助烟草行业管理生产流程

    与很多其他行业一样,烟草MES系统可以帮助卷烟企业实现智能生产.精益制造.快速实现烟草企业数字化车间的创建,助力企业实现改造升级,从而提升企业生产效率,降低生产成产.烟草行业得MES者得天下. 烟草行 ...