P2858 [USACO06FEB]奶牛零食Treats for the Cows

题目描述

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.Like fine wines and delicious cheeses, the treats improve with age and command greater prices.The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:

•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每

天可以从盒子的任一端取出最外面的一个.

•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.

•每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).

•第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.

Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.

输入格式

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

输出格式

Line 1: The maximum revenue FJ can achieve by selling the treats

输入输出样例

输入 #1

5

1

3

1

5

2

输出 #1

43

说明/提示

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

【思路】

区间DP

【题目大意】

每次都从左端点或者右端点选择一个零食

获得的价值是这个零食的价值乘以是第几个选择的

【核心思路】

可以设置一个状态f(i,j)

表示选取了i个零食,在左边选取了j个

这个状态可以由前面选取了i - 1个零食

在左边选取j个零食或者在左边选取了j-1个零食

意思就是:

之前选取了i-1个零食

现在选取的第i个零食

分别在左边选的还是在右边选的情况转移过来

【DP方程式】

\[f[i][j] = max(f[i - 1][j] + a[n - i + 1 + j] * i,f[i - 1][j - 1] + a[j] * i)
\]

【完整代码】

#include<iostream>
#include<cstdio> using namespace std;
const int Max = 2005;
int a[Max];
int f[Max][Max]; int main()
{
int n;
cin >> n;
for(register int i = 1;i <= n;++ i)
cin >> a[i];
for(register int i = 1;i <= n;++ i)
for(register int j = 0;j <= i;++ j)
f[i][j] = max(f[i - 1][j] + a[n - i + 1 + j] * i,f[i - 1][j - 1] + a[j] * i);
int M = 0;
for(register int i = 0;i <= n;++ i)
M = max(M,f[n][i]);
cout << M << endl;
return 0;
}

洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows 题解的更多相关文章

  1. 洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows

    题目描述 FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving va ...

  2. P2858 [USACO06FEB]奶牛零食Treats for the Cows

    P2858 [USACO06FEB]奶牛零食Treats for the Cows区间dp,级像矩阵取数, f[i][i+l]=max(f[i+1][i+l]+a[i]*(m-l),f[i][i+l- ...

  3. bzoj1652 / P2858 [USACO06FEB]奶牛零食Treats for the Cows

    P2858 [USACO06FEB]奶牛零食Treats for the Cows 区间dp 设$f[l][r]$为取区间$[l,r]$的最优解,蓝后倒着推 $f[l][r]=max(f[l+1][r ...

  4. 一道区间DP的水题 -- luogu P2858 [USACO06FEB]奶牛零食Treats for the Cows

    https://www.luogu.org/problemnew/show/P2858 方程很好想,关键我多枚举了一次(不过也没多大关系) #include <bits/stdc++.h> ...

  5. Luogu P2858 [USACO06FEB]奶牛零食Treats for the Cows 【区间dp】By cellur925

    题目传送门 做完A Game以后找道区间dp练练手...结果这题没写出来(哭). 和A Game一样的性质,从两边取,但是竟然还有天数,鉴于之前做dp经常在状态中少保存一些东西,所以这次精心设计了状态 ...

  6. AC日记——[USACO06FEB]奶牛零食Treats for the Cows 洛谷 P2858

    [USACO06FEB]奶牛零食Treats for the Cows 思路: 区间DP: 代码: #include <bits/stdc++.h> using namespace std ...

  7. 洛谷P2858 【[USACO06FEB]奶牛零食Treats for the Cows】

    我们可以记录头和尾再加一个卖了的零食数目,如果头超过尾就return 0. 如果遇到需要重复使用的数,(也就是不为零的d数组)就直接return d[tuo][wei]. 如果没有,就取卖头一个与最后 ...

  8. 区间DP【p2858】[USACO06FEB]奶牛零食Treats for the Cows

    Description 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望 ...

  9. [luoguP2858] [USACO06FEB]奶牛零食Treats for the Cows(DP)

    传送门 f[i][j][k] 表示 左右两段取到 i .... j 时,取 k 次的最优解 可以优化 k 其实等于 n - j + i 则 f[i][j] = max(f[i + 1][j] + a[ ...

随机推荐

  1. [個人紀錄] WindowsLiveWriter 插入代碼跳出錯誤

    跳出找不到設定檔Can’t load configruaration fromC:\Users\…\AppData\Roaming\Windows Live Writer\WindowsLiveWri ...

  2. JVM性能优化--字节码技术

    一.字节码技术应用场景 AOP技术.Lombok去除重复代码插件.动态修改class文件等 二.字节技术优势 Java字节码增强指的是在Java字节码生成之后,对其进行修改,增强其功能,这种方式相当于 ...

  3. Bean named 'XXX' is expected to be of type [XXX] but was actually of type [com.sun.proxy.$Proxy7

    AOP原理 <aop:aspectj-autoproxy />声明自动为spring容器中那些配置@aspectJ切面的bean创建代理,织入切面. <aop:aspectj-aut ...

  4. 【开发工具】- 如何导出/导入Idea的配置文件

    导出配置 打开工具,找到 file -> export setting ,选择路径即可,导出的是setting.jar文件. 导入配置 file –> import setttings – ...

  5. 【转载】C#使用ToList()将数组快速转换为List集合

    在C#的编程中,数组和List集合是比较常用的两个集合类,有时候因为业务需要,需要将数组集合转换为List集合,此时就可以使用C#中的Linq的扩展方法ToList方法来实现,只需要简单的一条语句即可 ...

  6. python3基础之“术语表(2)”

    51.编程: 让计算机执行的指令. 52.代码: 让计算机执行的命令. 53.底层编程语言: 与高级语言相比,更接近二进制的语言. 54.高级编程语言: 读起来像英语的易于理解的语言. 55.汇编语言 ...

  7. 手写DAO框架(七)-如何保证连接可用

    版权声明:本文为博客园博主「水木桶」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明.原文链接:https://www.cnblogs.com/shuimutong/p ...

  8. weblogic unable to get file lock问题

    非正常结束weblogic进程导致weblogic无法启动 由于先前服务器直接down掉了,所有进程都非正常的进行关闭了,也就导致了下次启动weblogic的时候报了以下错误: <2012-3- ...

  9. MySQL NULL--三值逻辑(Three Value Logic)

    三值逻辑(Three Value Logic) 在关系型数据库中,由于NULL值的存在,导致逻辑表达式存在三种值:TRUE/FALSE/UNKNOW. SELECT '=NULL AS C1, ' A ...

  10. Flask入门到放弃(五)—— 蓝图

    转载请在文章开头附上原文链接地址:https://www.cnblogs.com/Sunzz/p/10980094.html 蓝图 Blueprint 模块化 随着flask程序越来越复杂,我们需要对 ...