洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows 题解
P2858 [USACO06FEB]奶牛零食Treats for the Cows
题目描述
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.
The treats are interesting for many reasons:The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.Like fine wines and delicious cheeses, the treats improve with age and command greater prices.The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:
•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每
天可以从盒子的任一端取出最外面的一个.
•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.
•每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).
•第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.
Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.
输入格式
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
输出格式
Line 1: The maximum revenue FJ can achieve by selling the treats
输入输出样例
输入 #1
5
1
3
1
5
2
输出 #1
43
说明/提示
Explanation of the sample:
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
【思路】
区间DP
【题目大意】
每次都从左端点或者右端点选择一个零食
获得的价值是这个零食的价值乘以是第几个选择的
【核心思路】
可以设置一个状态f(i,j)
表示选取了i个零食,在左边选取了j个
这个状态可以由前面选取了i - 1个零食
在左边选取j个零食或者在左边选取了j-1个零食
意思就是:
之前选取了i-1个零食
现在选取的第i个零食
分别在左边选的还是在右边选的情况转移过来
【DP方程式】
\]
【完整代码】
#include<iostream>
#include<cstdio>
using namespace std;
const int Max = 2005;
int a[Max];
int f[Max][Max];
int main()
{
int n;
cin >> n;
for(register int i = 1;i <= n;++ i)
cin >> a[i];
for(register int i = 1;i <= n;++ i)
for(register int j = 0;j <= i;++ j)
f[i][j] = max(f[i - 1][j] + a[n - i + 1 + j] * i,f[i - 1][j - 1] + a[j] * i);
int M = 0;
for(register int i = 0;i <= n;++ i)
M = max(M,f[n][i]);
cout << M << endl;
return 0;
}
洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows 题解的更多相关文章
- 洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows
题目描述 FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving va ...
- P2858 [USACO06FEB]奶牛零食Treats for the Cows
P2858 [USACO06FEB]奶牛零食Treats for the Cows区间dp,级像矩阵取数, f[i][i+l]=max(f[i+1][i+l]+a[i]*(m-l),f[i][i+l- ...
- bzoj1652 / P2858 [USACO06FEB]奶牛零食Treats for the Cows
P2858 [USACO06FEB]奶牛零食Treats for the Cows 区间dp 设$f[l][r]$为取区间$[l,r]$的最优解,蓝后倒着推 $f[l][r]=max(f[l+1][r ...
- 一道区间DP的水题 -- luogu P2858 [USACO06FEB]奶牛零食Treats for the Cows
https://www.luogu.org/problemnew/show/P2858 方程很好想,关键我多枚举了一次(不过也没多大关系) #include <bits/stdc++.h> ...
- Luogu P2858 [USACO06FEB]奶牛零食Treats for the Cows 【区间dp】By cellur925
题目传送门 做完A Game以后找道区间dp练练手...结果这题没写出来(哭). 和A Game一样的性质,从两边取,但是竟然还有天数,鉴于之前做dp经常在状态中少保存一些东西,所以这次精心设计了状态 ...
- AC日记——[USACO06FEB]奶牛零食Treats for the Cows 洛谷 P2858
[USACO06FEB]奶牛零食Treats for the Cows 思路: 区间DP: 代码: #include <bits/stdc++.h> using namespace std ...
- 洛谷P2858 【[USACO06FEB]奶牛零食Treats for the Cows】
我们可以记录头和尾再加一个卖了的零食数目,如果头超过尾就return 0. 如果遇到需要重复使用的数,(也就是不为零的d数组)就直接return d[tuo][wei]. 如果没有,就取卖头一个与最后 ...
- 区间DP【p2858】[USACO06FEB]奶牛零食Treats for the Cows
Description 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望 ...
- [luoguP2858] [USACO06FEB]奶牛零食Treats for the Cows(DP)
传送门 f[i][j][k] 表示 左右两段取到 i .... j 时,取 k 次的最优解 可以优化 k 其实等于 n - j + i 则 f[i][j] = max(f[i + 1][j] + a[ ...
随机推荐
- 在linux系统下安装两个nginx以及启动、停止、重起
如果没有安装过nginx请看:linux下nginx部署以及配置详解 1.第一个nginx已经安装完成后,现在安装第二个nginx 启动:sudo /usr/sbin/nginx3 重起:sudo / ...
- XML和Json的特点
Xml特点: 1.有且只有一个根节点: 2.数据传输的载体 3.所有的标签都需要自定义 4.是纯文本文件 Json(JavaScript Object Notation)特点: json分为两种格式: ...
- java之spring之整合ssh-2
这篇也是主要讲解 ssh 的整合,不同于上一篇的是它的注入方式. 这篇会采用扫描注入的方式,即去除 applicationContext-asd.xml 文件. 目录结构如下: 注意,这里只列举不同的 ...
- mybatis中参数为list集合时使用 mybatis in查询
mybatis中参数为list集合时使用 mybatis in查询 一.问题描述mybatis sql查询时,若遇到多个条件匹配一个字段,sql 如: select * from user where ...
- 基于windows平台搭建elasticsearch 补充
https://www.cnblogs.com/skychen1218/p/8108860.html 参考此大神写的内容,感谢感谢. 不过 好像漏掉了一块内容. 导致出现问题 连接不上的问题.后来修改 ...
- PE系统——安装教程
本教程使用到的软件我会在本文末给出,若失效了请私信我,重新上传. 1.安装PE系统前,把U盘插在电脑上(如果你需要安装Windows10系统,请插入一个容量至少8G的U盘).当然容量最好是32—64G ...
- aria2 添加任务后一直在等待,不进行下载是什么情况?
https://www.v2ex.com/t/567014 跑 aria2 的机器配置比较低,是 j1900+4G 的小机器,系统是 ubuntu18.04 ,所有的任务都是 bt 下载.aria2 ...
- Falsk框架 Session 与 Flask-Session
目录 Cookie 与 Session 简单了解 Falsk 中 Session 的保管机制 相关的配置 使用 Flask-Session 三方组件 基础练习题 Cookie 与 Session 简单 ...
- restframework中根据请求的类型修改序列化类
只要在视图中重写get_serializer_class方法就可以,用if对请求的类型进行判断 def get_serializer_class(self): if self.action == &q ...
- js跳出循环的方法区别(break,continue,return)(转载)
转自:http://blog.csdn.net/fxss5201/article/details/52980138 js编程语法之break语句: break语句会使运行的程序立刻退出包含在最内层的循 ...