LOJ6102「2017 山东二轮集训 Day1」第三题 【min-max容斥,反演】
题目描述:输入一个大小为\(n\)的集合\(S\),求\(\text{lcm}_{k\in S}f_k\),其中\(f_k\)是第$$个Fibonacci数。
数据范围:\(n\le 5\times 10^4,u\le 10^6\)
数论经典题?
首先你要想到min-max容斥。
\]
然后你知道\(\gcd(f_a,f_b)=f_\gcd(a,b)\),所以。
\]
不知道为什么你开始反演,设\(f_n=\prod\limits_{d|n}g_d\),则\(g_n=\prod\limits_{d|n}f_{d}^{\mu(\frac{n}{d})}\)。
\text{lcm}(f_S)&=\prod_{\varnothing\ne T\subseteq S}(\prod_{d|\gcd(T)}g_d)^{(-1)^{|T|-1}} \\
&=\prod_{d}g_d^{\sum\limits_{\varnothing\ne T\subseteq S,d|T}(-1)^{|T|-1}}
\end{aligned}
\]
我们看看指数是啥。设\(S_d=\{n|n\in S\and d|n\}\)。
\]
所以
\]
直接做,时间复杂度\(O(k\log k)\)
code
```cpp
#include
#define Rint register int
using namespace std;
typedef long long LL;
const int mod = 1e9 + 7, N = 1000003;
int n, a[N], mx, f[N], g[N], ans = 1;
bool vis[N];
inline int add(int a, int b){return (a + b >= mod) ? (a + b - mod) : (a + b);}
inline int kasumi(int a, int b){
int res = 1;
while(b){
if(b & 1) res = (LL) res * a % mod;
a = (LL) a * a % mod; b >>= 1;
}
return res;
}
int main(){
scanf("%d", &n);
for(Rint i = 1;i
LOJ6102「2017 山东二轮集训 Day1」第三题 【min-max容斥,反演】的更多相关文章
- loj6102 「2017 山东二轮集训 Day1」第三题
传送门:https://loj.ac/problem/6102 [题解] 贴一份zyz在知乎的回答吧 https://www.zhihu.com/question/61218881 其实是经典问题 # ...
- loj6100 「2017 山东二轮集训 Day1」第一题
传送门:https://loj.ac/problem/6100 [题解] 我们考虑维护从某个端点开始的最长满足条件的长度,如果知道了这个东西显然我们可以用主席树来对每个节点建棵关于右端点的权值线段树, ...
- LOJ #6119. 「2017 山东二轮集训 Day7」国王
Description 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当 ...
- loj6119 「2017 山东二轮集训 Day7」国王
题目描述 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当这条路径上的工 ...
- LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基,贪心)
LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我 ...
- 【LOJ6077】「2017 山东一轮集训 Day7」逆序对 生成函数+组合数+DP
[LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ...
- loj #6077. 「2017 山东一轮集训 Day7」逆序对
#6077. 「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
随机推荐
- java注解注意点
注意:以后工作中代码中 不允许出现警告 自定义注解 1:自定义注解并没有发挥它的作用,而Eclipse自带的注解通过反射另外有一套代码,可以发挥它的作用,例如:跟踪代码...... 2:如果自定义的代 ...
- 混沌理论(Chaos theory)和非线性系统
混沌理论(Chaos theory)是关于非线性系统在一定参数条件下展现分岔(bifurcation).周期运动与非周期运动相互纠缠,以至于通向某种非周期有序运动的理论.在耗散系统和保守系统中,混沌运 ...
- AudioToolbox--利用AudioQueue音频队列,通过缓存对声音进行采集与播放
都说iOS最恶心的部分是流媒体,其中恶心的恶心之处更在即时语音. 所以我们先不谈即时语音,研究一下,iOS中声音采集与播放的实现. 要在iOS设备上实现录音和播放功能,苹果提供了简单的做法,那就是利用 ...
- Spring 在xml文件中配置Bean
Spring容器是一个大工厂,负责创建.管理所有的Bean. Spring容器支持2种格式的配置文件:xml文件.properties文件,最常用的是xml文件. Bean在xml文件中的配置 < ...
- Jenkins详细教程
大纲 1.背景 在实际开发中,我们经常要一边开发一边测试,当然这里说的测试并不是程序员对自己代码的单元测试,而是同组程序员将代码提交后,由测试人员测试: 或者前后端分离后,经常会修改接口,然后重新部署 ...
- 用navicat操作oracle新建表空间、用户名、密码
转载从:https://www.cnblogs.com/franson-2016/p/5925593.html 首先.我们来新建一个表空间.打开Navicat for Oracle,输入相关的的连接信 ...
- robotframe添加自定义lib 报Importing test library ‘xxxx’ failed
问题现象:在linux服务器上搭建jenkins 执行robot工程时报:Importing test library ‘xxxx’ failed 问题分析一: 在library 引入非rob ...
- Linux命令——chgrp、chown、chmod
简介 这三个命令都用于更改文件permission(权限).即下图红框位置 除此之外还有个“连结”,那个指的是硬链接,不是软连接.FS使用inode区分不同文件,而目录树使用文件名区分不同文件,因此可 ...
- Linux-存储服务之NFS
NFS介绍 官方文档 NFS(Network File System)即网络文件系统,它最大的功能就是通过TCP/IP网络共享资源.在NFS的应用中,本地NFS的客户端应用可以透明地读写位于远端NFS ...
- go语言笔记1
Go语言学习整理 本文基于菜鸟教程,对于自己不明白的点加了点个人注解,对于已明确的点做了删除,可能结构不太清晰,看官们可移步Go语言教程 1 Go语言结构当标识符(包括常量.变量.类型.函数名. ...