隐马尔科夫模型(Hidden Markov Models) 系列之二
转自:http://blog.csdn.net/eaglex/article/details/6385204
隐含模式(Hidden Patterns)
当马尔科夫过程不够强大的时候,我们又该怎么办呢?
在某些情况下马尔科夫过程不足以描述我们希望发现的模式。回到之前那个天气的例子,一个隐居的人可能不能直观的观察到天气的情况,但是有一些海藻。民间的传说告诉我们海藻的状态在某种概率上是和天气的情况相关的。在这种情况下我们有两个状态集合,一个可以观察到的状态集合(海藻的状态)和一个隐藏的状态(天气的状况)。我们希望能找到一个算法可以根据海藻的状况和马尔科夫假设来预测天气的状况。
一个更现实的例子是语音识别,我们听到的声音是声带、喉咙和一起其他的发音器官共同作用的结果。这些因素相互作用,共同决定了每一个单词的声音,而一个语音识别系统检测的声音(可以观察的状态)是人体内部各种物理变化(隐藏的状态、引申一个人真正想表达的意思)产生的。
某些语音识别设备把内部的发音机制作为一个隐藏的状态序列,把最后的声音看成是一个和隐藏的状态序列十分相似的可以观察到的状态的序列。在这两个例子中,一个非常重要的地方是隐藏状态的数目和可以观察到的状态的数目可能是不一样的。在一个有三种状态的天气系统(sunny、cloudy、rainy)中,也许可以观察到四种潮湿程度的海藻(dry、dryish、damp、soggy)。在语音识别中,一个简单的发言也许只需要80个语素来描述,但是一个内部的发音机制可以产生不到80或者超过80种不同的声音。
在上面的这些情况下,可以观察到的状态序列和隐藏的状态序列是概率相关的。于是我们可以将这种类型的过程建模为又一个隐藏的马尔科夫过程和一个和这个马尔科夫过程概率相关的并且可以观察到的状态集合。
下图显示了天气的例子中隐藏的状态和可以观察到的状态之间的关系。我们假设隐藏的状态是一个简单的一阶马尔科夫过程,并且他们两两之间都可以相互转换。

隐藏的状态和可以观察到的状态之间有一种概率上的关系,也就是说某种隐藏状态H被认为是某个可以观察的状态O1是有概率的,假设为P(O1|H)。如果可以可以观察的状态有三种,那么很显然P(O1|H)+ P(O2|H)+ P(O3|H) = 1。这里我和原文的意思不太相同,原文说的意思是P(O1|H1)+ P(O1|H2)+P(O1|H3)= 1,但是这和下面的例子又不同。
这样,我们也可以得到一个另一个矩阵,称为混淆矩阵。这个矩阵的内容是某个隐藏的状态被分别观察成集中不同的可以观察的状态的概率,在天气的例子中,这个矩阵如下图:

注意到图中每一行的和为1,但是每一列的和不为1,这里我觉得可能是原文出错了,或者隐藏状态还有其他。
总结
我们已经看到有一些过程是和一个隐藏的马尔科夫过程概率相关的。在这种情况下,可以观察到的状态和隐藏的状态的数目可能是不一样的。我们可以把这种过程建模为隐马尔科夫模型(HMM)。这个模型包含两个状态集合和三个概率集合。
- 隐藏的状态:一个隐藏的马尔科夫过程
- 可以观察到的状态:如名
- 初始向量:初始状态的隐藏状态的概率
- 状态转移矩阵:隐藏状态的状态转移概率
- 混淆矩阵:隐藏状态被观察成各个可以观察到的状态的概率
我们可以认为隐马尔科夫模型是在一个不可观察的马尔科夫过程上添加了一个可以观察到的状态集合,加上这个过程到这个集合的一些概率关系得到的。
隐马尔科夫模型(Hidden Markov Models) 系列之二的更多相关文章
- 隐马尔科夫模型(Hidden Markov Models) 系列之三
转自:http://blog.csdn.net/eaglex/article/details/6418219 隐马尔科夫模型(Hidden Markov Models) 定义 隐马尔科夫模型可以用一个 ...
- 隐马尔科夫模型(Hidden Markov Models) 系列之五
转自:http://blog.csdn.net/eaglex/article/details/6458541 维特比算法(Viterbi Algorithm) 找到可能性最大的隐藏序列 通常我们都有一 ...
- 隐马尔科夫模型(Hidden Markov Models) 系列之一
转自:http://blog.csdn.net/eaglex/article/details/6376826 介绍(introduction) 通常我们总是对寻找某一段时间上的模式感兴趣,这些模式可能 ...
- 隐马尔科夫模型(Hidden Markov Models) 系列之四
转自:http://blog.csdn.net/eaglex/article/details/6430389 前向算法(Forward Algorithm) 一.如果计算一个可观察序列的概率? 1 ...
- 隐马尔科夫模型(Hidden Markov Models)
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...
- 隐马尔科夫模型(hidden Markov Model)
万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法 2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...
- 隐马尔科夫模型(hidden Markov model, HMM)
- 隐马尔可夫模型(Hidden Markov Model)
隐马尔可夫模型(Hidden Markov Model) 隐马尔可夫模型(Hidden Markov Model, HMM)是一个重要的机器学习模型.直观地说,它可以解决一类这样的问题:有某样事物存在 ...
- [综]隐马尔可夫模型Hidden Markov Model (HMM)
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更 ...
随机推荐
- python cookie登录DVWA,phpstudy搭建DVWA参考https://www.jianshu.com/p/97d874548300
import requestsheader={"User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleW ...
- grep命令用法
linux中grep命令的用法 作为linux中最为常用的三大文本(awk,sed,grep)处理工具之一,掌握好其用法是很有必要的. 首先谈一下grep命令的常用格式为:grep [选项] ”模 ...
- 2019.6.11_MySQL进阶三:临时表
临时表 临时表主要应用于保存一些临时数据.临时表只在当前连接可见.当关闭连接时,MySQL会自动删除表并且释放空间.临时表在MySQL 3.23版本中添加,低于 3.23版本就无法使用MySQL的临时 ...
- VSCode变换python的调试解释器
假如一个电脑上有多个Python的环境,想要设置不同的python解释器用于调试. VSCode 的设置,是通过.json的文本来配置的.打开文本的方式: 打开后的文件如下所示: 可以试试“new s ...
- pointnet++之classification/train.py
1.数据集加载 if FLAGS.normal: assert(NUM_POINT<=10000) DATA_PATH = os.path.join(ROOT_DIR, 'data/modeln ...
- 每天一道Rust-LeetCode(2019-06-05)
每天一道Rust-LeetCode(2019-06-05) 最长回文子串 坚持每天一道题,刷题学习Rust. 接续昨天,最长会问字符串的另一种解法 题目描述 解题过程 //leetcode最快解法 / ...
- leetcode2. 两数相加
使用迭代的方式 class Solution{ public: ListNode *addTwoNumbers(ListNode* l1,ListNode *l2) { ListNode *res=) ...
- Linux文件系统与日志
1.inode 包含文件的元信息(1)inode 内容:文件的字节数.拥有者的 UID.GID.文件的读写执行权限.时间戳等,但不包含文件名.文件名是储存在目录的目录项中.(2)查看文件的 inode ...
- [LeetCode] 402. Remove K Digits 去掉K位数字
Given a non-negative integer num represented as a string, remove k digits from the number so that th ...
- DVWA File Upload 通关教程
File Upload,即文件上传.文件上传漏洞通常是由于对上传文件的类型.内容没有进行严格的过滤.检查,使得攻击者可以通过上传木马获取服务器的webshell权限,因此文件上传漏洞带来的危害常常是毁 ...