洛谷 题解 P1041 【传染病控制】
【思路】
题目给出一棵树。第\(i\)步拆的一定是第\(i\)层与第\(i+1\)层之间的连边,否则不是最优(自行证明即可),所以可以暴力枚举每一次拆哪一个节点与上一个节点的连边。
把所有节点所在的层数存下来,一号点在第\(1\)层,枚举每一层的每个节点(由于\(1\)号节点已经被感染,从第二层开始搜索就可以了)
大概可分为以下几步:
存好一整棵树
把每一层的节点都存在一个数组里面
标记以ii号节点为根节点的子树的节点个数
标记与回溯
暴力搜索
【细节精讲】
1、树的存储
关于多叉树的存储,这里介绍一种简单有效的方法。考虑如下代码:
struct Node
{
int father;
int child[MAXN];
}tree[MAXN];
\(tree[i]\)存\(i\)号节点的所有信息:
\(father\)存父亲(在这题没有用) ; \(child[]\)存它所有的孩子 ; \(child[0]\)是它孩子的个数。
由于数据范围很小,我们不用担心造成空间过多的浪费。
结构体构建完成之后,我们就可以在读入的同时把整棵树存好。
n=read();p=read();
for(int i=1;i<=p;i++)
{
int x=read(),y=read();
if(x>y)swap(x,y);
tree[y].father=x;
tree[x].child[++tree[x].child[0]]=y;
}
2 、标记深度
如果能够理解,标记深度是比较简单的。

如图:我们令\(1\)号节点的深度为\(1\) ; 则\(2,3\)节点深度为\(2\) ; \(4,5,6,7\)节点的深度为\(3\); \(8\)节点的深度为\(4\)。这棵树一共有\(4\)层。
代码用\(deep[i][j]\)存第\(i\)层第\(j\)个节点的编号。\(deep[i][0]\)是第\(i\)层一共的节点数。
inline void getdeep(int now,int Nowdeep)//当前的节点标号是now,层数是Nowdeep
{
maxdeep=max(maxdeep,Nowdeep);//标记一共有几层
for(int i=1;i<=tree[now].child[0];i++)
{
deep[Nowdeep][++deep[Nowdeep][0]]=tree[now].child[i];//把这个节点放到第i层的数组中
getdeep(tree[now].child[i],Nowdeep+1);//以这个点为父节点继续标记它的儿子。每个节点的深度等于它父节点的深度+1
}
}
3、切断问题
我们知道,只要一个点与上层点的传播途径被切断,即这个点不会得传染病,那么以这个点为根节点的整个子树都应该被标记为安全。
这一段代码用来标记\(now\)这个节点为根节点的子树一共有多少节点,存在\(num[]\)中。
inline int getnum(int now)
{
for(int i=1;i<=tree[now].child[0];i++)
num[now]+=getnum(tree[now].child[i]);
return num[now];
}
4、回溯
接下来,我们切断了这个节点,相应地,以这个点为根节点的子树都应该被标记。(\(tag=1\)表示标记,\(tag=0\)表示删去标记,用于回溯)
inline void work(int now,bool tag)
{
vis[now]=tag;
for(int i=1;i<=tree[now].child[0];i++)
{
vis[tree[now].child[i]]=tag;
work(tree[now].child[i],tag);
}
}
5、搜索
做完上面这些铺垫操作之后,我们可以开始整个代码的核心:搜索了。
首先可以想到如下代码
inline void DFS(int now,int cnt)
{
if((now==maxdeep))
{
ans=min(ans,cnt);
return;
}
for(int i=1;i<=deep[now][0];i++)
{
if(vis[deep[now][i]])
continue;
work(deep[now][i],1);
DFS(now+1,cnt-num[deep[now][i]]);
work(deep[now][i],0);
}
}
但是提交这段代码的话只能得80分。为什么呢?
我们可以考虑这样一棵树:

它是一条链。我们第一次只能切断1号节点和2号节点之间的连边,这样第三层所有的节点就都被标记了。那么问题是什么呢?根本就搜不到最后一层的节点,导致答案根本没有更新!
于是我们优化一下搜索代码:
inline void DFS(int now,int cnt)
{
int tot=0;//记录总数
if((now==maxdeep))
{
ans=min(ans,cnt);
return;
}
for(int i=1;i<=deep[now][0];i++)
{
if(vis[deep[now][i]])
{
tot++;
continue;
}
work(deep[now][i],1);
DFS(now+1,cnt-num[deep[now][i]]);
work(deep[now][i],0);
}
if(tot==deep[now][0])//如果全部都被访问过了,那么直接更新答案
ans=min(ans,cnt);
}
【代码】
#include<bits/stdc++.h>
using namespace std;
const int MAXN=300+10;
int n,p;
struct Node
{
int father;
int child[MAXN];
}tree[MAXN];
int num[MAXN];
int deep[MAXN][MAXN];
int maxdeep=0;
bool vis[MAXN];
int ans=0x3f3f3f3f;
inline int read()
{
int tot=0;
char c=getchar();
while(c<'0'||c>'9')
c=getchar();
while(c>='0'&&c<='9')
{
tot=(tot<<1)+(tot<<3)+c-'0';
c=getchar();
}
return tot;
}
inline void getdeep(int now,int Nowdeep)
{
maxdeep=max(maxdeep,Nowdeep);
for(int i=1;i<=tree[now].child[0];i++)
{
deep[Nowdeep][++deep[Nowdeep][0]]=tree[now].child[i];
getdeep(tree[now].child[i],Nowdeep+1);
}
}
inline int getnum(int now)
{
for(int i=1;i<=tree[now].child[0];i++)
num[now]+=getnum(tree[now].child[i]);
return num[now];
}
inline void work(int now,bool tag)
{
vis[now]=tag;
for(int i=1;i<=tree[now].child[0];i++)
{
vis[tree[now].child[i]]=tag;
work(tree[now].child[i],tag);
}
}
inline void DFS(int now,int cnt)
{
int tot=0;
if((now==maxdeep))
{
ans=min(ans,cnt);
return;
}
for(int i=1;i<=deep[now][0];i++)
{
if(vis[deep[now][i]])
{
tot++;
continue;
}
work(deep[now][i],1);
DFS(now+1,cnt-num[deep[now][i]]);
work(deep[now][i],0);
}
if(tot==deep[now][0])
ans=min(ans,cnt);
}
int main()
{
n=read();p=read();
fill(num+1,num+1+n,1);
for(int i=1;i<=p;i++)
{
int x=read(),y=read();
if(x>y)swap(x,y);
tree[y].father=x;
tree[x].child[++tree[x].child[0]]=y;
}
/*for(int i=1;i<=n;i++)
{
for(int j=1;j<=tree[i].child[0];i++)cout<<tree[i].child[j]<<" ";
cout<<endl;
}*/
getdeep(1,2);
/*for(int i=2;i<=maxdeep;i++)
{
for(int j=1;j<=deep[i][0];j++)cout<<deep[i][j]<<" ";
cout<<endl;
}*/
getnum(1);
DFS(2,n);
printf("%d\n",ans);
return 0;
}
\]
洛谷 题解 P1041 【传染病控制】的更多相关文章
- 洛谷 题解 UVA572 【油田 Oil Deposits】
这是我在洛谷上的第一篇题解!!!!!!!! 这个其实很简单的 我是一只卡在了结束条件这里所以一直听取WA声一片,详细解释代码里见 #include<iostream> #include&l ...
- 洛谷 题解 P1600 【天天爱跑步】 (NOIP2016)
必须得说,这是一道难题(尤其对于我这样普及组205分的蒟蒻) 提交结果(NOIP2016 天天爱跑步): OJ名 编号 题目 状态 分数 总时间 内存 代码 / 答案文件 提交者 提交时间 Libre ...
- 洛谷题解P4314CPU监控--线段树
题目链接 https://www.luogu.org/problemnew/show/P4314 https://www.lydsy.com/JudgeOnline/problem.php?id=30 ...
- 洛谷题解 CF777A 【Shell Game】
同步题解 题目翻译(可能有童鞋没读懂题面上的翻译) 给你三张牌0,1,2. 最初选一张,然后依次进行n次交换,交换规则为:中间一张和左边的一张,中间一张和右边一张,中间一张和左边一张...... 最后 ...
- 洛谷题解 CF807A 【Is it rated?】
同步题解 题目 好吧,来说说思路: 1.先读入啦~(≧▽≦)/~啦啦啦 2.判断a[i]赛前赛后是否同分数,如果分数不同,则输出,return 0 . 3.如果同分数,则判断a[i]赛前(或赛后)是否 ...
- 洛谷题解 P1138 【第k小整数】
蒟蒻发题解了 说明:此题我用的方法为桶排(我翻了翻有人用了桶排只不过很难看出来,可能有些重复的,这个题只是作为一个专门的桶排来讲解吧) (不会算抄袭吧 ‘QWaWQ’) 简单来说(会的人跳过就行): ...
- 【洛谷题解】P2303 [SDOi2012]Longge的问题
题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...
- 洛谷题解 P2865 【[USACO06NOV]路障Roadblocks】
链接:https://www.luogu.org/problemnew/show/P2865 题目描述 Bessie has moved to a small farm and sometimes e ...
- 洛谷题解:P1209 【[USACO1.3]修理牛棚 Barn Repair】
原题传送门:https://www.luogu.org/problemnew/show/P1209 首先,这是一道贪心题. 我们先来分析它的贪心策略. 例如,样例: 4 50 18 3 4 6 ...
随机推荐
- svg坐标转换
本文内容转自 how-to-translate-from-dom-to-svg-coordinates-and-back-again svg coordinate system Why we need ...
- 洛谷P1714切蛋糕
题目 该题目就是求这n个数的前缀和所组成的数组的所有子区间的左端点和右端点相差不超过m,且他们的前缀和差最大,求出这个最大值即可. 而朴素算法肯定会T,而我们发现如果前缀和最大的话,则前缀和的值一定是 ...
- 【一起来烧脑】读懂WebApp知识体系
背景 很多小白知道什么是app,但是却不知道什么是webapp呢,webapp是指用HTML5编写的移动web应用 一个webapp可以在pc端,Android端,ios端进行运行 webapp开发的 ...
- linux 下终端通过证书、私钥快捷登录
ssh -i 你的证书 root@IP地址 -p 端口号 ssh -i {您的 .pem 文件的完整路径} ec2-user@{实例 IP 地址} 设置秘钥权限chmod 600 ~/.ssh/id_ ...
- Spring boot MyBatis基本操作
XML 配置方式 目录结构 数据库信息: 数据库student -> 表名 custom_user -> 主键-> custom_id ,其他字段 cusotm_name,cust ...
- ubuntu之路——day2
一:sougou输入法安装 详情参考:https://blog.csdn.net/xin17863935225/article/details/82285177 注意切换成fcitx架构 因为linu ...
- Python自动化测试常用库
基本库: sys 程序和Python解析器的交互 os 启动新进程:操作文件和目录 re 正则表达式,字符串匹配 string 基本字符串操作 inspect 提供自省和反射功能 importlib ...
- [spring-boot] 配置随机端口
第一种: server.port=0 第二种: //自定义一个范围 server.port=${random.int[1024,9999]}
- html5中的fieldset/legend元素和keygen元素
html5中的fieldset/legend元素和keygen元素 一.总结 一句话总结: fieldset/legend元素和figure和figcaption很像,只不过是作用于表单,前者表示内容 ...
- JS数组常见方法的深浅拷贝分类
一.涉及浅拷贝类方法,会改变原数组 1,pop(): 删除 arrayObject 的最后一个元素,把数组长度减 1,并且返回它删除的元素的值.如果数组已经为空,则 pop() 不 改变数组,并返 ...