传送门——BZOJCH


考虑两种情况:

1、答案由一个最长公共子串+可能的一个模糊匹配位置组成。这个用SAM求一下最长公共子串,但是需要注意只出现在\(S\)的开头和\(T\)的结尾的子串是不能够通过额外的一个模糊匹配得到更长的子串的,而对于其他的子串来说都可以。

2、答案由模糊位置两遍的子串构成。暴力就是枚举\(S\)和\(T\)中模糊匹配的位置\(i,j\),那么长度就是\(LCS(i-1,j-1)+LCP(i+1,j+1)+1\)。

注意到\(LCS(i,j)\)是对正串建SAM得到的前缀树上\(S[:i]\)和\(T[:j]\)对应的点的LCA的Longest;\(LCP(i,j)\)是对反串建SAM得到的后缀树上的\(S[i:]\)和\(T[j:]\)对应节点的LCA的Longest,所以我们可以把这个问题变为类似于两棵树上LCA深度和最大值的一个问题。

对于这个问题,我们考虑在前缀树上dfs,对于每个节点用set维护其子树内所有的合法前缀在后缀树上的dfs序,每一次加入一个子树的时候用启发式合并,用dfs序相邻的两个点的LCA更新当前点的答案,最后用当前点的Longest加上当前点的答案更新总答案。

#include<bits/stdc++.h>
using namespace std; const int _ = 4e5 + 7;
struct SAM{
int trs[_][27] , Lst[_] , fa[_] , pos[_] , cnt = 1; bool flg[_]; int extend(int p , int l , int c , bool f = 1){
int t = ++cnt; Lst[t] = pos[t] = l; flg[t] = f;
while(p && !trs[p][c]){trs[p][c] = t; p = fa[p];} if(!p){fa[t] = 1; return t;}
int q = trs[p][c]; if(Lst[q] == Lst[p] + 1){fa[t] = q; return t;}
int k = ++cnt; memcpy(trs[k] , trs[q] , sizeof(trs[q]));
fa[k] = fa[q]; fa[q] = fa[t] = k; Lst[k] = Lst[p] + 1;
while(trs[p][c] == q){trs[p][c] = k; p = fa[p];} return t;
} vector < int > ch[_]; int dfn[_] , to[_][20] , ts , dep[_];
void dfs(int x){
dfn[x] = ++ts; dep[x] = dep[fa[x]] + 1; to[x][0] = fa[x];
for(int i = 1 ; to[x][i - 1] ; ++i) to[x][i] = to[to[x][i - 1]][i - 1];
for(auto t : ch[x]){dfs(t); flg[x] |= flg[t];}
}
void build(){for(int i = 2 ; i <= cnt ; ++i) ch[fa[i]].push_back(i); dfs(dep[1] = 1);} int LCA(int p , int q){
if(dep[p] < dep[q]) swap(p , q);
for(int i = 18 ; i >= 0 ; --i) if(dep[p] - (1 << i) >= dep[q]) p = to[p][i];
if(p == q) return Lst[p];
for(int i = 18 ; i >= 0 ; --i) if(to[p][i] != to[q][i]){p = to[p][i]; q = to[q][i];}
return Lst[to[p][0]];
}
}sam[3]; char str[_]; int id[2][_] , mx[_] , LS , LT , L , ans; struct cmp{bool operator ()(int a , int b){return sam[1].dfn[a] < sam[1].dfn[b];}};
set < int , cmp > n1[_] , n2[_]; void merge(int p , int q){
if(n1[p].size() + n2[p].size() < n1[q].size() + n2[q].size()){n1[p].swap(n1[q]); n2[p].swap(n2[q]);}
for(auto t : n1[q]){
auto it = n2[p].lower_bound(t); if(it != n2[p].end()) mx[p] = max(mx[p] , sam[1].LCA(*it , t));
if(it != n2[p].begin()) mx[p] = max(mx[p] , sam[1].LCA(*--it , t));
}
for(auto t : n2[q]){
auto it = n1[p].lower_bound(t); if(it != n1[p].end()) mx[p] = max(mx[p] , sam[1].LCA(*it , t));
if(it != n1[p].begin()) mx[p] = max(mx[p] , sam[1].LCA(*--it , t));
}
for(auto t : n1[q]) n1[p].insert(t); for(auto t : n2[q]) n2[p].insert(t);
} void dfs(int x){
if(sam[0].pos[x] && sam[0].pos[x] <= LS - 2) n1[x].insert(id[1][sam[0].pos[x] + 2]);
if(sam[0].pos[x] >= LS + 2 && sam[0].pos[x] <= L - 2) n2[x].insert(id[1][sam[0].pos[x] + 2]);
for(auto t : sam[0].ch[x]){dfs(t); merge(x , t);}
if(mx[x]) ans = max(ans , mx[x] + sam[0].Lst[x] + 1);
} int main(){
scanf("%s" , str + 1); LS = strlen(str + 1); str[LS + 1] = 'z' + 1;
scanf("%s" , str + LS + 2); LT = strlen(str + LS + 2); L = strlen(str + 1);
id[0][0] = id[1][L + 1] = 1;
for(int i = 1 ; i <= L ; ++i) id[0][i] = sam[0].extend(id[0][i - 1] , i , str[i] - 'a');
for(int i = L ; i ; --i) id[1][i] = sam[1].extend(id[1][i + 1] , L - i + 1 , str[i] - 'a');
int pre = 1; for(int i = 1 ; i <= LS ; ++i) pre = sam[2].extend(pre , i , str[i] - 'a' , i != LS);
int cur = 1 , len = 0; sam[2].build();
for(int i = LS + 2 ; i <= L ; ++i){
while(cur && !sam[2].trs[cur][str[i] - 'a']) len = sam[2].Lst[cur = sam[2].fa[cur]];
if(!cur) cur = 1; else{cur = sam[2].trs[cur][str[i] - 'a']; ++len;}
ans = max(ans , len + !sam[2].flg[cur]);
}
sam[0].build(); sam[1].build(); dfs(1); cout << min(ans , min(LS , LT)); return 0;
}

BZOJ3145 [Feyat cup 1.5]Str 后缀树、启发式合并的更多相关文章

  1. BZOJ3145 : [Feyat cup 1.5]Str

    如果不存在模糊点,那么答案就是两个串的最长公共子串. 如果模糊点是某个串的开头或者结尾,那么可以暴力枚举另一个串中的某个前后缀更新答案. 否则,假设模糊点在第一个串里是$i$,在第二个串里是$j$,那 ...

  2. [BZOJ 3145][Feyat cup 1.5]Str 解题报告

    [Feyat cup 1.5]Str DescriptionArcueid,白姬,真祖的公主.在和推倒贵看电影时突然对一个问题产生了兴趣:我们都知道真祖和死徒是有类似的地方.那么从现代科学的角度如何解 ...

  3. Bzoj 3145 - [Feyat cup 1.5]Str

    bzoj 3145 - [Feyat cup 1.5]Str Description 给你两个长度\(10^5\)级别的串\(S, T\) 求\(S,T\)的最长模糊匹配公共子串 模糊匹配 : 至多一 ...

  4. Bzoj2534:后缀自动机 主席树启发式合并

    国际惯例的题面:考虑我们求解出字符串uvu第一个u的右端点为i,第二个u的右端点为j,我们需要满足什么性质?显然j>i+L,因为我们选择的串不能是空串.另外考虑i和j的最长公共前缀(也就是说其p ...

  5. 【bzoj3123】[Sdoi2013]森林 倍增LCA+主席树+启发式合并

    题目描述 输入 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负 ...

  6. P3302 [SDOI2013]森林(主席树+启发式合并)

    P3302 [SDOI2013]森林 主席树+启发式合并 (我以前的主席树板子是错的.......坑了我老久TAT) 第k小问题显然是主席树. 我们对每个点维护一棵包含其子树所有节点的主席树 询问(x ...

  7. 【BZOJ-3123】森林 主席树 + 启发式合并

    3123: [Sdoi2013]森林 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2738  Solved: 806[Submit][Status] ...

  8. [bzoj3123] [SDOI2013]森林 主席树+启发式合并+LCT

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  9. 【主席树 启发式合并】bzoj3123: [Sdoi2013]森林

    小细节磕磕碰碰浪费了半个多小时的时间 Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M ...

随机推荐

  1. 下载win10系统

    有时候想重装系统但总找不到下载的地方,今天记录一下.nsdn我告诉你,这里有许多软件下载 网站URL:https://msdn.itellyou.cn/ 我想下载一个Windows10 磁力地址 ed ...

  2. scrapy-redis 0.6.8 配置信息

    很多博客的db参数配置都不能用,所以记录一下该版本可用的配置 #启用Redis调度存储请求队列 SCHEDULER = "scrapy_redis.scheduler.Scheduler&q ...

  3. Maven打包时出现“Show Console View”错误弹出框,错误详情为“An internal error has occurred. java.lang.NullPointerException”的解决方法

    今天为项目打包时出现了下面的错误提示: 打开Details里面写的是“An internal error has occurred. java.lang.NullPointerException”.在 ...

  4. Odoo视图的共有标签

    转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10826405.html 1)name (必选) 通过name值,查找标签 2)model 与view相关联的 ...

  5. Linux文件增删改

    Linux目录/文件增删改 创建文件 (1) # touch  <文件名称> (2) 花括号展开 touch /root/{1,3,9}.txt touch /root/{0..100}. ...

  6. PCA 在手写数字数据集上的应用

    在 skilearn 的手写数据集中,每个数据点都是 0 到 9 之间手写数字的一张 8*8 灰度图像.用 PCA 将其降维到二维,并可视化数据点,如下: 1.digits 数据演示: from sk ...

  7. 目标检测论文解读13——FPN

    引言 对于小目标通常需要用到多尺度检测,作者提出的FPN是一种快速且效果好的多尺度检测方法. 方法 a,b,c是之前的方法,其中a,c用到了多尺度检测的思想,但他们都存在明显的缺点. a方法:把每图片 ...

  8. Java 字符流读写文件

    据说,java读写文件要写很多,贼麻烦,不像c艹,几行代码就搞定.只能抄抄模板拿来用了. 输入输出流分字节流和字符流.先看看字符流的操作,字节转化为字符也可读写. 一.写入文件 1.FileWrite ...

  9. Java 内存分配(转)

    Java程序运行在JVM(Java Virtual Machine,Java虚拟机)上,可以把JVM理解成Java程序和操作系统之间的桥梁,JVM实现了Java的平台无关性. 寄存器:JVM内部虚拟寄 ...

  10. 【Linux】bat文件如何执行

    绝对路径,"/home/myDir/xxx.bat" OR 所在的目录,:"./xxx.bat".