查找算法(4)--Fibonacci search--斐波那契查找
1.斐波那契查找
(1)说明
在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。
黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。
0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。
大家记不记得斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….(从第三个数开始,后边每一个数都是前两个数的和)。然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

(2)基本思想
也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。
相对于折半查找,一般将待比较的key值与第mid=(low+high)/2位置的元素比较,比较结果分三种情况:
[1]相等,mid位置的元素即为所求
[2]>,low=mid+1;
[3]<,high=mid-1。
斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,及n=F(k)-1;
开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种
[1]相等,mid位置的元素即为所求
[2]>,low=mid+1,k-=2;
说明:low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。
[3]<,high=mid-1,k-=1。
说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归 的应用斐波那契查找。
(3)复杂度分析
最坏情况下,时间复杂度为O(log2n),且其期望复杂度也为O(log2n)。
2.代码
public final static int MAXSIZE = 20;
/**
* 斐波那契数列
*
* @return
*/
public static int[] fibonacci() {
int[] f = new int[MAXSIZE];
int i = 0;
f[0] = 1;
f[1] = 1;
for (i = 2; i < MAXSIZE; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
} public static int fibonacciSearch(int[] data, int key) {
int low = 0;
int high = data.length - 1;
int mid = 0;
//斐波那契分割数值下标
int k = 0;
//序列元素个数
int i = 0;
// 获取斐波那契数列
int[] f = fibonacci();
//获取斐波那契分割数值下标
while (data.length > f[k] - 1) {
k++;
}
//创建临时数组
int[] temp = new int[f[k] - 1];
for (int j = 0; j < data.length; j++) {
temp[j] = data[j];
}
//序列补充至f[k]个元素
//补充的元素值为最后一个元素的值
for (i = data.length; i < f[k] - 1; i++) {
temp[i] = temp[high];
}
//打印
for (int j : temp) {
System.out.print(j + " ");
}
System.out.println();
//开始查找
while (low <= high) {
// low:起始位置
// 前半部分有f[k-1]个元素,由于下标从0开始
// 则-1 获取 黄金分割位置元素的下标
mid = low + f[k - 1] - 1; if (temp[mid] > key) {
// 查找前半部分,高位指针移动
high = mid - 1;
// (全部元素) = (前半部分)+(后半部分)
// f[k] = f[k-1] + f[k-1]
// 因为前半部分有f[k-1]个元素,所以 k = k-1
k = k - 1;
} else if (temp[mid] < key) {
// 查找后半部分,高位指针移动
low = mid + 1;
// (全部元素) = (前半部分)+(后半部分)
// f[k] = f[k-1] + f[k-1]
// 因为后半部分有f[k-1]个元素,所以 k = k-2
k = k - 2;
} else {
//如果为真则找到相应的位置
if (mid <= high) {
return mid;
} else {
//出现这种情况是查找到补充的元素
//而补充的元素与high位置的元素一样
return high;
}
}
}
return -1;
} public static void main(String[] args) {
int[] f = fibonacci();
for (int i : f) {
System.out.print(i + " ");
}
System.out.println();
int[] data = {1, 5, 15, 22, 25, 31, 39, 42, 47, 49, 59, 68, 88};
int search = 39;
int position = fibonacciSearch(data, search);
System.out.println("值" + search + "的元素位置为:" + position);
}
查找算法(4)--Fibonacci search--斐波那契查找的更多相关文章
- 【算法】Fibonacci(斐波那契数列)相关问题
一.列出Fibonacci数列的前N个数 using System; using System.Collections.Generic; using System.Linq; using System ...
- 斐波那契查找(Fibonacci Search)
斐波那契查找 斐波那契查找就是在二分查找的基础上根据斐波那契数列进行分割的. 在斐波那契数列找一个等于略大于查找表中元素个数的数F[n],将原查找表扩展为长度为F[n](如果要补充元素,则补充重复 ...
- 【Java】 大话数据结构(10) 查找算法(1)(顺序、二分、插值、斐波那契查找)
本文根据<大话数据结构>一书,实现了Java版的顺序查找.折半查找.插值查找.斐波那契查找. 注:为与书一致,记录均从下标为1开始. 顺序表查找 顺序查找 顺序查找(Sequential ...
- python实现斐波那契查找
通过在网上找教程解释和看书,总结出一套比较简单易懂的代码实现. 斐波那契查找和二分查找一样,针对的是有序序列,在此前提下: # 先创建一个Fibonacci函数 fib = lambda n: n i ...
- 10、end关键字和Fibonacci series: 斐波纳契数列
# Fibonacci series: 斐波纳契数列 # 两个元素的总和确定了下一个数 a, b = 0, 1 #复合赋值表达式,a,b同时赋值0和1 while b < 10: print(b ...
- 算法 递归 迭代 动态规划 斐波那契数列 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- 《BI那点儿事》Microsoft 时序算法——验证神奇的斐波那契数列
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- 基于visual Studio2013解决算法导论之045斐波那契堆
题目 斐波那契堆 解决代码及点评 // 斐波那契堆.cpp : 定义控制台应用程序的入口点. // #include<iostream> #include<cstdio> ...
- Fibonacci series(斐波纳契数列)的几种常见实现方式
费波那契数列的定义: 费波那契数列(意大利语:Successione di Fibonacci),又译费波拿契数.斐波那契数列.斐波那契数列.黄金切割数列. 在数学上,费波那契数列是以递归的方法来定义 ...
- [LeetCode] Fibonacci Number 斐波那契数字
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...
随机推荐
- ssm批量删除
ssm批量删除 批量删除:顾名思义就是一次性删除多个.删除是根据前台传给后台的id,那么所谓批量删除,就是将多个id传给后台,那么如何传过去呢,前后台的交互该如何实现? 1.jsp页面,先选中所有的要 ...
- linux内核中的文件描述符(二)--socket和文件描述符
http://blog.csdn.net/ce123_zhouwei/article/details/8459730 Linux内核中的文件描述符(二)--socket和文件描述符 Kernel ve ...
- 2.Vue.js 是什么
Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架. 与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用. Vue 的核心库只关注视图层,不仅易于上手,还便 ...
- [Git] Remove Files from Staging Before Committing
If you've added files to the staging area (the Index) accidentally - you can remove them using git r ...
- Jupyter的快捷键使用
命令模式 (按键 Esc 开启) Enter : 转入编辑模式 Shift-Enter : 运行本单元,选中下个单元 Ctrl-Enter : 运行本单元 Alt-Enter : 运行本单元,在其下插 ...
- python函数 | 匿名函数lambda
匿名函数:lambda 表达式.普通函数有且只有返回值的函数才能用匿名函数进行简化成一行函数. 匿名函数不单独使用,一般和内置函数结合使用.内置函数中,可加入函数的有min.max.sorted.ma ...
- isopod dsl 框架管理kubernetes 配置
isopod 是一个包含了丰富能力的dsl 框架我们可以不用编写yaml 文件来进行k8s 管理 说明 语法类似python,目前移植内置了一些不错的功能kube 方法 vault 集成,helm 集 ...
- cloudevents js sdk 简单试用
cloudevents 目前官方提供了不同语言的sdk,以下是js 的简单学习试用,从目前来说更新不是很好 clone 代码 git clone https://github.com/cloudeve ...
- 如何在你的springboot(cloud)项目中引入我的github上的jar仓库呢?
1. 将此标签内容放到pom.xml仅次于project标签下 <repositories> <repository> <id>github</id> ...
- [RN] React Native 使用 AsyncStorage 存储 缓存数据
React Native 使用 AsyncStorage 存储 缓存数据 AsyncStorage是一个简单的.异步的.持久化的Key-Value存储系统,它对于App来说是全局性的.这是官网上对它的 ...