题目链接

因为每个数都是\(10^5\)以内,考虑直接用\(bitset\)维护。

\(a-b=x\),其实就是看是否有\(p\)和\(p+x\)同时存在,直接\(bitset\)移位按位与一下就好了。

\(a+b=x\),这个直接搞不好搞,所以考虑转化。

\[a-(N-b)=a+b-N=x-N
\]

其中\(N\)为一个常数,令\(f(x)=N-x\),则有

\[f(b)-f(x)=a
\]

于是再开个\(bitset\)维护\(f(x)\),然后就很显然了。

\(a*b=x\),这个显然没法用\(bitset\)做,但是\(x\)的因数个数是\(\sqrt x\)级别的,所以直接暴力枚举因数就行了。

为了防止负数的出现,上文中的\(N\)取题中的值域上限\(10^5\)

最后套上莫队模板。

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <bitset>
#include <cmath>
#include <iostream>
using namespace std;
const int MAXN = 100010;
bitset <MAXN> p1, p2;
int n, m, a[MAXN];
inline int read(){
int s = 0;
char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s;
}
int Q, v[MAXN], ans[MAXN];
struct ask{
int type, l, r, c, id;
int operator < (const ask A) const{
return l / Q == A.l / Q ? r < A.r : l < A.l;
}
}q[MAXN];
void add(int x){
++v[a[x]];
p1[a[x]] = p2[100000 - a[x]] = 1;
}
void del(int x){
if(!--v[a[x]])
p1[a[x]] = p2[100000 - a[x]] = 0;
}
int main(){
n = read(); m = read(); Q = sqrt(n);
for(int i = 1; i <= n; ++i)
a[i] = read();
for(int i = 1; i <= m; ++i)
scanf("%d%d%d%d", &q[i].type, &q[i].l, &q[i].r, &q[i].c), q[i].id = i;
sort(q + 1, q + m + 1);
int l = 1, r = 0;
for(int i = 1; i <= m; ++i){
while(r < q[i].r) add(++r);
while(l > q[i].l) add(--l);
while(r > q[i].r) del(r--);
while(l < q[i].l) del(l++);
if(q[i].type == 1){
ans[q[i].id] = (p1 & (p1 >> q[i].c)).any();
}else if(q[i].type == 2){
ans[q[i].id] = (p1 & (p2 >> (100000 - q[i].c))).any();
}else{
if(!q[i].c) ans[q[i].id] = v[0];
int sqr = sqrt(q[i].c);
for(int j = 1; j <= sqr; ++j)
if(q[i].c % j == 0)
if(v[j] && v[q[i].c / j]){
ans[q[i].id] = 1;
break;
}
}
}
for(int i = 1; i <= m; ++i)
printf("%s\n", ans[i] ? "hana" : "bi");
return 0;
}

【洛谷 P3674】 小清新人渣的本愿(bitset,莫队)的更多相关文章

  1. 洛谷P3674 小清新人渣的本愿(莫队)

    传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...

  2. 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]

    传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...

  3. 洛谷P3674 小清新人渣的本愿

    题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...

  4. 洛谷 P3674 小清新人渣的本愿

    想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队 ...

  5. luogu P3674 小清新人渣的本愿(莫队+bitset)

    这题是莫队维护bitset. 然而我并不会bitset以前讲过认为不考就没学 我真的太菜了. 首先维护一个权值的bitset--s. 操作3比较简单,我们可以\(\sqrt{x}\)枚举约数然后判断就 ...

  6. luogu3674 小清新人渣的本愿 (bitset+莫队)

    对于加减,用bitset维护当前每个数有没有 对于乘,暴力枚举约数 然后莫队 复杂度$O(m(\sqrt{n}+\frac{c}{64}))$ #include<bits/stdc++.h> ...

  7. 【洛谷3674】小清新人渣的本愿(莫队,bitset)

    [洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...

  8. P3674 小清新人渣的本愿

    P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...

  9. 【题解】Luogu P3674 小清新人渣的本愿

    原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...

  10. luogu P3674 小清新人渣的本愿

    传送门 毒瘤lxl 本质是莫队,关键是怎么处理询问 这里需要开两个bitset(记为\(b1,b2\)),分别存\(x\)和\(n-x\)是否出现 对于询问1,即\(x-y=z\),由于\(y=x-z ...

随机推荐

  1. 为什么集合类没有实现Cloneable和Serializable接口

    为什么集合类没有实现Cloneable和Serializable接口? 答:克隆(cloning)或者序列化(serialization)的语义和含义是跟具体的实现相关的.因此应该由集合类的具体实现类 ...

  2. SpringCloud Feign 常用代码

    服务提供者 服务提供者,是位于其他项目里面的. 服务提供者提供的方法,在Controller层里面,有可访问的Url. @Controller @RequestMapping("/order ...

  3. MySQL事务部分回滚-回滚到指定保存点

    我们可以在mysql事务处理过程中定义保存点(SAVEPOINT),然后回滚到指定的保存点前的状态. 定义保存点,以及回滚到指定保存点前状态的语法如下. 定义保存点---SAVEPOINT 保存点名; ...

  4. Java_jdbc 基础笔记之十三 数据库连接(DAO)

    public class DAO { // INSERT, UPDATE, DELETE 操作都可以包含在其中 public void update(String sql, Object... arg ...

  5. 性能测试指标:TPS,吞吐量,并发数,响应时间

    性能测试指标:TPS,吞吐量,并发数,响应时间 常用的网站性能测试指标有:TPS.吞吐量.并发数.响应时间.性能计数器等. 并发数并发数是指系统同时能处理的请求数量,这个也是反应了系统的负载能力. 响 ...

  6. 008 webpack的其他使用方式

    一:配置 1.配置文件 每次修改main文件,重新打包都要指定入口与出口,比较费事,可以使用配置文件的方式 在根目录下新建webpack.config.js: const path = require ...

  7. Java基础 三目运算符 在嵌套时,使用括号

        JDK :OpenJDK-11      OS :CentOS 7.6.1810      IDE :Eclipse 2019‑03 typesetting :Markdown   code ...

  8. Jmeter之测试计划

    一.打开jmeter时会有一个测试计划默认显示,界面如下: 二.测试计划各个配置项说明 1.名称:即整个测试计划的名称,已实际项目命名为好: 2.注释:即添加一些备注信息,以便后期回顾时查看: 3.用 ...

  9. (转)python3:类方法,静态方法和实例方法以及应用场景

    原文:https://blog.csdn.net/qq_34979346/article/details/83212716 1.实例方法在编程里经常用的是实例方法,直接用实例去调用, 只要 方法里有s ...

  10. C语言 宽字符串

    /* 宽字符串的打印 */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include ...