题目链接

因为每个数都是\(10^5\)以内,考虑直接用\(bitset\)维护。

\(a-b=x\),其实就是看是否有\(p\)和\(p+x\)同时存在,直接\(bitset\)移位按位与一下就好了。

\(a+b=x\),这个直接搞不好搞,所以考虑转化。

\[a-(N-b)=a+b-N=x-N
\]

其中\(N\)为一个常数,令\(f(x)=N-x\),则有

\[f(b)-f(x)=a
\]

于是再开个\(bitset\)维护\(f(x)\),然后就很显然了。

\(a*b=x\),这个显然没法用\(bitset\)做,但是\(x\)的因数个数是\(\sqrt x\)级别的,所以直接暴力枚举因数就行了。

为了防止负数的出现,上文中的\(N\)取题中的值域上限\(10^5\)

最后套上莫队模板。

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <bitset>
#include <cmath>
#include <iostream>
using namespace std;
const int MAXN = 100010;
bitset <MAXN> p1, p2;
int n, m, a[MAXN];
inline int read(){
int s = 0;
char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s;
}
int Q, v[MAXN], ans[MAXN];
struct ask{
int type, l, r, c, id;
int operator < (const ask A) const{
return l / Q == A.l / Q ? r < A.r : l < A.l;
}
}q[MAXN];
void add(int x){
++v[a[x]];
p1[a[x]] = p2[100000 - a[x]] = 1;
}
void del(int x){
if(!--v[a[x]])
p1[a[x]] = p2[100000 - a[x]] = 0;
}
int main(){
n = read(); m = read(); Q = sqrt(n);
for(int i = 1; i <= n; ++i)
a[i] = read();
for(int i = 1; i <= m; ++i)
scanf("%d%d%d%d", &q[i].type, &q[i].l, &q[i].r, &q[i].c), q[i].id = i;
sort(q + 1, q + m + 1);
int l = 1, r = 0;
for(int i = 1; i <= m; ++i){
while(r < q[i].r) add(++r);
while(l > q[i].l) add(--l);
while(r > q[i].r) del(r--);
while(l < q[i].l) del(l++);
if(q[i].type == 1){
ans[q[i].id] = (p1 & (p1 >> q[i].c)).any();
}else if(q[i].type == 2){
ans[q[i].id] = (p1 & (p2 >> (100000 - q[i].c))).any();
}else{
if(!q[i].c) ans[q[i].id] = v[0];
int sqr = sqrt(q[i].c);
for(int j = 1; j <= sqr; ++j)
if(q[i].c % j == 0)
if(v[j] && v[q[i].c / j]){
ans[q[i].id] = 1;
break;
}
}
}
for(int i = 1; i <= m; ++i)
printf("%s\n", ans[i] ? "hana" : "bi");
return 0;
}

【洛谷 P3674】 小清新人渣的本愿(bitset,莫队)的更多相关文章

  1. 洛谷P3674 小清新人渣的本愿(莫队)

    传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...

  2. 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]

    传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...

  3. 洛谷P3674 小清新人渣的本愿

    题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...

  4. 洛谷 P3674 小清新人渣的本愿

    想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队 ...

  5. luogu P3674 小清新人渣的本愿(莫队+bitset)

    这题是莫队维护bitset. 然而我并不会bitset以前讲过认为不考就没学 我真的太菜了. 首先维护一个权值的bitset--s. 操作3比较简单,我们可以\(\sqrt{x}\)枚举约数然后判断就 ...

  6. luogu3674 小清新人渣的本愿 (bitset+莫队)

    对于加减,用bitset维护当前每个数有没有 对于乘,暴力枚举约数 然后莫队 复杂度$O(m(\sqrt{n}+\frac{c}{64}))$ #include<bits/stdc++.h> ...

  7. 【洛谷3674】小清新人渣的本愿(莫队,bitset)

    [洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...

  8. P3674 小清新人渣的本愿

    P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...

  9. 【题解】Luogu P3674 小清新人渣的本愿

    原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...

  10. luogu P3674 小清新人渣的本愿

    传送门 毒瘤lxl 本质是莫队,关键是怎么处理询问 这里需要开两个bitset(记为\(b1,b2\)),分别存\(x\)和\(n-x\)是否出现 对于询问1,即\(x-y=z\),由于\(y=x-z ...

随机推荐

  1. VUE中常用的十大过滤器

    在vue的学习过程中,我发现过滤器是一个很好用的工具,过滤器(Filters)来渲染数据是一种很有趣的方式.过滤器不能替代Vue中的methods.computed或者watch,不改变真正的data ...

  2. Java 自定义异常

    新建类CustomException继承 Exception /** * Create by on 2019-07-30 * 自定义类需要继承Exception * @author lsw */ pu ...

  3. php中socket、fsockopen、curl、stream 区别

    socket 水泥.沙子,底层的东西fsockopen 水泥预制件,可以用来搭房子curl 毛坯房,自己装修一下就能住了 水泥.沙子不但可以修房子,还能修路.修桥.大型雕塑.socket也是,不但可以 ...

  4. [源码分析]LinkedHashMap

    一个键有序的 HashMap   可以将 LinkedHashMap 理解为 LinkList + HashMap,所以研究LinkedHashMap之前要先看HashMap代码.这里不再赘述.其实L ...

  5. Python selenium PO By.XPATH定位元素报错

    Python selenium PO  By.XPATH定位元素报错 如下代码经常报错: # 首页的“新建投放计划”按钮 new_ads_plan = (By.XPATH, "//*[tex ...

  6. UltraEdit 的“查看方式”着色类项型

    UltraEdit 的“查看方式”着色类项型 2011年06月22日 13:16:00 cnki_ok 阅读数 5722   版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请 ...

  7. ContextLoadListener & DispatcherServlet 加载顺序以及加载过程

    org.springframework.web.context.ContextLoaderListener 1org.springframework.web.servlet.DispatcherSer ...

  8. JS高级:面向对象的构造函数

    1 创建对象的方式 1.1 字面量的方式创建对象 var p1 = { name: '张三', run: function () { console.log(this.name + '跑'); } } ...

  9. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  10. 转 全新多媒体共享器Ipush推送|Miracast WIFI无线同屏推送

    http://www.52bjw.cn/product-info/5767857.html 操作指南及注意事项 (draft) miracast和dlna/airplay分别工作在wifi direc ...