C++处理一个动态规划的问题
嗯哼,别人问的问题,看的我也头晕,百度了一下动态规划,看了看才想起来该怎么做,今天写了写代码,实现了~
要求是递归,动态规划,想了想这种方法也是最简单的~
所谓动态规划:把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解。动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。(摘自百科)(时间复杂度为一个多项式的复杂度)
背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。
题目如截图:


解题思路:
n代表面值
n为1,直接看是否可以整除;
n>1,看在没有第n个面值的时候多少,然后看有1个、2个....j/n个面值为n的时候需要几枚硬币,取最小值
将这些直接存在数组中,然后去数组里的最小值
代码:
#include"header_file.h"
using namespace std; int coin_num(vector<int> T,int i,int j)
{
if(i==)
{
if(j%T[]==)
{
return j/T[];
}
else
{
return ;
}
}
else
{
int min;
min=coin_num(T,i-,j);
int temp;
temp=j/T[i-];
for(int m=;m<=temp;m++)
{
if(min>(m+coin_num(T,i-,j-m*T[i-])))
min=m+coin_num(T,i-,j-m*T[i-]); }
return min;
}
} vector<int> all_num(vector<int> T,int j)
{
vector<int> v;
for(int i=;i<T.size();i++)
v.push_back(coin_num(T,i+,j));
// for(int i=0;i<T.size();i++) //use for test
// cout<<v[i]<<" ";
//v.push_back(coin_num(T,i+1,j));
return v;
} int find_min(vector<int> v)
{
int min=;
for(int i=;i<v.size();i++)
{
if(v[min]>v[i])
min=i;
}
return v[min];
} int main(void)
{
int n;
cout<<"input n:";
cin>>n; vector<int> T;
for(int i=;i<n;i++)
{
int temp;
cin>>temp;
T.push_back(temp);
} int j;
cout<<"input j:";
cin>>j; vector<int> v;
v=all_num(T,j);
int min;
min=find_min(v);
cout<<"min:"<<min<<endl;
}
C++处理一个动态规划的问题的更多相关文章
- 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵
题目描述: 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵(矩阵中元素个数为矩阵面积) 输入: 每个案例第一行三个正整数N,M<=100,表示矩阵大小,和一个整数K 接下 ...
- [算法]动态规划(Dynamic programming)
转载请注明原创:http://www.cnblogs.com/StartoverX/p/4603173.html Dynamic Programming的Programming指的不是程序而是一种表格 ...
- 算法导论——lec 11 动态规划及应用
和分治法一样,动态规划也是通过组合子问题的解而解决整个问题的.分治法是指将问题划分为一个一个独立的子问题,递归地求解各个子问题然后合并子问题的解而得到原问题的解.与此不同,动态规划适用于子问题不是相互 ...
- UVa Live 3942 Remember the Word - Hash - 动态规划
题目传送门 高速路出口I 高速路出口II 题目大意 给定若干种短串,和文本串$S$,问有多少种方式可以将短串拼成长串. 显然,你需要一个动态规划. 用$f[i]$表示拼出串$S$前$i$个字符的方案数 ...
- 动态规划-独特的子字符串存在于Wraparound String总个数 Unique Substrings in Wraparound String
2018-09-01 22:50:59 问题描述: 问题求解: 如果单纯的遍历判断,那么如何去重保证unique是一个很困难的事情,事实上最初我就困在了这个点上. 后来发现是一个动态规划的问题,可以将 ...
- 动态规划——最长公共子序列LCS及模板
摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字 ...
- 动态规划小结 - 一维动态规划 - 时间复杂度 O(n),题 [LeetCode] Jump Game,Decode Ways
引言 一维动态规划根据转移方程,复杂度一般有两种情况. func(i) 只和 func(i-1)有关,时间复杂度是O(n),这种情况下空间复杂度往往可以优化为O(1) func(i) 和 func(1 ...
- 动态规划:HDU1176-免费馅饼
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- Gym 100829S_surf 动态规划的优化
题目大意是,非你若干个任务,任务分别对应开始时间.预期收益.持续时间三项指标,让你从中选择一个受益最大的方案(没有开始时间相同的任务). 于是,标准状态转移方程应当为,设DP[K]为选择了前K个任务的 ...
随机推荐
- Cobbler自动化批量安装linux服务器的操作记录
Cobbler为何物?Cobbler是一个快速网络安装linux的服务,而且在经过调整也可以支持网络安装windows.该工具使用python开发,小巧轻便(才15k行python代码),使用简单的命 ...
- javascript中的浅复制和深复制
//浅复制:实现基本类型的复制没有问题,但是复制的是引用类型的话,则修改child将会修改parent function extend(parent,child){ var child = child ...
- C语言 文件操作4--文件结构体FILE的理解以及缓冲区再讲
//文件结构体FILE的理解以及缓冲区再讲 #include<stdio.h> #include<stdlib.h> //要点:文件结构 //struct _iobuf { / ...
- no2.crossdomain.xml批量读取(待完善)
读取太多url有问题 #coding=utf-8 import urllib import requests import sys import re import time def getxml(u ...
- ASP.NET MVC学习系列(二)-WebAPI请求(转)
转自:http://www.cnblogs.com/babycool/p/3922738.html 继续接着上文 ASP.NET MVC学习系列(一)-WebAPI初探 来看看对于一般前台页面发起的g ...
- sql截取
String sql2="select count(*) from t_testuser where substr(INSETTIME,1,10)=to_char(sysdate,'yyyy ...
- JavaScript系列:《JavaScript高级程序设计》,chapter2, 在html中使用JavaScript
2.1.2 延迟脚本 指的是defer属性,且只适用于外部脚本,也就是有defer属性的脚本. 由于各种延迟浏览器对延迟脚本的支持不统一,且在html5之后也不再支持defer属性,所 ...
- 详解.NET IL代码
一.前言 IL是什么? Intermediate Language (IL)微软中间语言 C#代码编译过程? C#源代码通过LC转为IL代码,IL主要包含一些元数据和中间语言指令: JIT编译器把IL ...
- Django1.8教程——从零开始搭建一个完整django博客(三)
这一节主要介绍对数据库的访问操作:通过管理器(manage),对对象进行检索.修改.删除等操作,详细介绍了如何针对不同的模型自定义管理器. 查询和管理工作 现在,我们已经有了一个功能完善的Django ...
- 魅蓝Note2 在Android Studio 与 Eclipse中无法被检测到
昨天到手的Note2 结果发现测试不了,一看魅蓝的版本是android 5.1,然后更新的自己的SDK. 最后…… 仍然不能识别到手机. ———————————— 今天在stackoverflow上搜 ...