Unique Paths I

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

分析:

用A[i][j]表示到达点i,j可能的走法。 对于点A[i][j],它可以从上一个格子下来,也可以从左边那个格子过来。所以A[i][j] = A[i-1][j] + A[i][j-1].

 public class Solution {
/**
* @param n, m: positive integer (1 <= n ,m <= 100)
* @return an integer
*/
public int uniquePaths(int m, int n) {
if (n < || m < ) return ;
if (n == || m == ) return ; int[][] paths = new int[m][n]; for (int i = ; i < paths.length; i++) {
for (int j = ; j < paths[].length; j++) {
if (i == || j == ) {
paths[i][j] = ;
} else {
paths[i][j] = paths[i - ][j] + paths[i][j - ];
}
}
}
return paths[m - ][n - ];
}
}

Another solution:

(For clarity, we will solve this part assuming an X+1 by Y+1 grid)

Each path has X+Y steps. Imagine the following paths:

X X Y Y X (we move right on the first 2 steps, then down on the next 2, then right  for the last step)

X Y X Y X (we move right, then down, then right, then down, then right)

Each path can be fully represented by the moves at which we move right. That is, if I were to ask you which path you took, you could simply say “I moved right on step 3 and 4.” Since you must always move right X times, and you have X + Y total steps, you have to pick X times to move right out of X+Y choices. Thus, there are C(X, X+Y) paths (eg, X+Y choose X).

Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

 
Example

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

分析:

原理同上,没有任何区别。

 public class Solution {
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == || obstacleGrid[].length == ) return ; int m = obstacleGrid.length;
int n = obstacleGrid[].length; int[][] paths = new int[m][n]; for (int i = ; i < m; i++) {
for (int j = ; j < n; j++) {
if (obstacleGrid[i][j] == ) {
paths[i][j] = ;
} else if (i == && j == ) {
paths[i][j] = ;
} else if (i == ) {
paths[i][j] = paths[i][j - ];
} else if (j == ) {
paths[i][j] = paths[i - ][j];
} else {
paths[i][j] = paths[i - ][j] + paths[i][j - ];
}
}
}
return paths[m - ][n - ];
}
}

Unique Paths | & ||的更多相关文章

  1. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  2. [LeetCode] Unique Paths 不同的路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  3. Leetcode Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  4. Unique Paths II

    这题在Unique Paths的基础上增加了一些obstacle的位置,应该说增加的难度不大,但是写的时候对细节的要求多了很多,比如,第一列的初始化会受到之前行的第一列的结果的制约.另外对第一行的初始 ...

  5. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  6. 62. Unique Paths && 63 Unique Paths II

    https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...

  7. 【leetcode】Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  8. leetcode 63. Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  9. 【leetcode】Unique Paths II

    Unique Paths II Total Accepted: 22828 Total Submissions: 81414My Submissions Follow up for "Uni ...

  10. Leetcode Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

随机推荐

  1. poj3522 kruskal+枚举

    题目的意思是求构成生成树的边的最大边和最小边的差最小.枚举即可 #include<stdio.h> #include<string.h> #include<algorit ...

  2. Html-input文本框只能输入数字

    onKeyPress="if ((event.keyCode < 48 || event.keyCode > 57)) event.returnValue = false;&qu ...

  3. Java设计模式-观察者模式(Observer)

    包括这个模式在内的接下来的四个模式,都是类和类之间的关系,不涉及到继承,学的时候应该 记得归纳,记得本文最开始的那个图.观察者模式很好理解,类似于邮件订阅和RSS订阅,当我们浏览一些博客或wiki时, ...

  4. 【poj1201】 Intervals

    http://poj.org/problem?id=1201 (题目链接) 题意 给出n个区间${[ai,bi]}$,要求选出尽可能少的数,使得每个区间i中至少存在${c[i]}$个数. Soluti ...

  5. POJ 2828 Buy Tickets

    Description Railway tickets were difficult to buy around the Lunar New Year in China, so we must get ...

  6. Server Data Synchronization Via Linux rsync、rsync+inotify Between Load Balance Server

    目录 . 远程文件同步的应用场景 . rsync+crontab . rsync+inotify 1. 远程文件同步的应用场景 在负载均衡集群的应用场景中,往往在多台web server的前端有一个提 ...

  7. 配置Junit测试程序

    第一步:加载所需要的包:右键-->Build Path-->Configure Build Path-->Libraries-->Add Library-->Junit ...

  8. Spring学习7-Spring整合Hibernate

    一.Springl为什么要整合Hibernate   二者的整合主要是把hibernate中核心的一些类型交给spring管理,这些类型主要包括sessionFactory. transactionM ...

  9. eclipse中Preferences的一些设置

    1.在Eclipse里面设置了java文件保存时自动格式化,在java->Code Style->Formatter里设置了自定义的格式化的样式,这样每次保存后都会自动格式化代码,用了一段 ...

  10. ios 判断控制器是否是第一次进入画页的做法

    什么是第一次进入画页,只viewDidLoad一次: 所以只需要在viewDidLoad中加一个标识就行了. 加一个成员变量,或者属性,用来记录这个标识 一旦viewDidLoad后,这个就说明不是第 ...