A feature-detection example using the Intel® Threading Building Blocks flow graph

By Michael V. (Intel), Added September 9, 2011

Translate
Chinese Simplified
Chinese Traditional
English
French
German
Italian
Portuguese
Russian
Spanish
Turkish

Translate

 

The Intel® Threading Building Blocks ( Intel® TBB )  flow graph is fully supported in Intel® TBB 4.0.  If you are unfamiliar with the flow graph, you can read an introduction here.

Figure 1 below shows a flow graph that implements a simple feature detection application. A number of images will enter the graph and two alternative feature detection algorithms will be applied to each one. If either algorithm detects a feature of interest, the image will be stored for later inspection. In this article, I’ll describe each node used in this graph, and then provide and described a complete working implementation.

Figure 1: The Intel® TBB flow graph for the feature-detection example.

In the figure, there are four different type of nodes used to construct the application: a source_node, a queue_node, two join_nodes, and several function_nodes. Before I provide a sample implementation, I’ll provide a brief overview of each node.

The first type of node is a source_node, which is shown pictorially using the symbol below. This type of node has no predecessors, and is used to generate messages that are injected into the graph. It executes a user functor (or lambda expression) to generate its output. The unfilled circle on its right side indicates that it buffers its output and that this buffer can be reserved. The source_node buffers a single item. When a buffer is reserved, a value is held for the caller until the caller either consumes or releases the value. A source_node will only invoke the user functor when there is nothing currently buffered in its single item output buffer.

The second type of node is a queue_node, which is show using the figure below. A queue_node is an unbounded first-in first-out buffer. Like the source_node, its output is reservable.

The third type of node, of which there are two variants used in the example, is the join_node. A join_node has multiple input ports and generates a single output tuple that contains a value received at each port. A join_node can use different policies at its input ports: queueingreserving or tag_matching. A queueing join_node, greedily consumes all messages as they arrive and generates an output whenever it has at least 1 item at each input queue. A reserving join_node only attempts to generate a tuple when it can successfully reserve an item at each input port. If it cannot successfully reserve all inputs, it releases all of its reservations and will only try again when it receives a message from the port or ports it was previously unable to reserve. Lastly, a tag_matching join_node uses hash tables to buffer messages in its input ports. When it has received messages at each port that have matching keys, it creates an output tuple with these messages. Shown below are the symbol for the reserving and tag_matching join_nodes used in Figure 1.

The final node type used in this example is a function_node; it uses the symbol shown below. A function_node executes a user-provided functor or lambda expression on incoming messages, passing the return value to its successors. A function_node can be constructed with a limited or unlimited allowable concurrency level. A function_node with unlimited concurrency creates a task to apply its functor to each message as they arrive. If a function_node has limited concurrency, it will create tasks only up to its allowed concurrency level, buffering messages at its input as necessary so that they are not dropped.

To save on space, I’m going to fake the image processing parts of this example. In particular, each image will simply be an array of characters. An image that contains the character ‘A’ has a feature recognizable by algorithm A, and an image that contains the character ‘B’ has a feature recognizable by algorithm B. So in the post, I will provide the complete code to construct and execute a flow graph that has the structure shown in Figure 1, but I’ll replace the actual computations with trivial ones.

Below is the declaration of struct image, as well as the trivial implementations that can be used as the bodies of the function nodes. The function get_next_image will be used by the source_node to generate images for processing. You might note that in get_next_image, every 11th image will have a feature detectable by algorithm A and every 13th image will contain a feature detectable by algorithm B. The function preprocess_image adds a simple offset to each character, and detect_with_A and detect_with_B do the trivial search for the characters 'A' and 'B', respectively.

#include <cstring>
#include <cstdio>

const int num_image_buffers = 100;
int image_size = 10000000;

struct image {
   const int N;
   char *data;
   image();
   image( int image_number, bool a, bool b );
};

image::image() : N(image_size) {
   data = new char[N];
}

image::image( int image_number, bool a, bool b ) : N(image_size) {
    data = new char[N];
    memset( data, '\0', N );
    data[0] = (char)image_number - 32;
    if ( a ) data[N-2] = 'A';
    if ( b ) data[N-1] = 'B';
}

int img_number = 0;
int num_images = 64;
const int a_frequency = 11;
const int b_frequency = 13;

image *get_next_image() {
    bool a = false, b = false;
    if ( img_number < num_images ) {
        if ( img_number%a_frequency == 0 ) a = true;
        if ( img_number%b_frequency == 0 ) b = true;
        return new image( img_number++, a, b );
    } else {
       return false;
    }
}

void preprocess_image( image *input_image, image *output_image ) {
    for ( int i = 0; i < input_image->N; ++i ) {
        output_image->data[i] = input_image->data[i] + 32;
    }
}

bool detect_with_A( image *input_image ) {
    for ( int i = 0; i < input_image->N; ++i ) {
        if ( input_image->data[i] == 'a' )
            return true;
    }
    return false;
}

bool detect_with_B( image *input_image ) {
    for ( int i = 0; i < input_image->N; ++i ) {
        if ( input_image->data[i] == 'b' )
            return true;
    }
    return false;
}

void output_image( image *input_image, bool found_a, bool found_b ) {
    bool a = false, b = false;
    int a_i = -1, b_i = -1;
    for ( int i = 0; i < input_image->N; ++i ) {
        if ( input_image->data[i] == 'a' ) { a = true; a_i = i; }
        if ( input_image->data[i] == 'b' ) { b = true; b_i = i; }
    }
    printf("Detected feature (a,b)=(%d,%d)=(%d,%d) at (%d,%d) for image %p:%d\n",
a, b, found_a, found_b, a_i, b_i, input_image, input_image->data[0]);
}

The code to implement the flow graph itself is shown in function main below. I will interject text in the middle of the listing of main to describe the use of the flow graph components. If you want to build this example, you can just cut and paste the code snippets above and below linearly into a single file.

int num_graph_buffers = 8;

#include "tbb/flow_graph.h"

using namespace tbb;
using namespace tbb::flow;

int main() {

First, a graph g is created. All of the nodes will belong to this single graph. A few typedefs are provided to make it easier to refer to the outputs of the join nodes:

    graph g;

    typedef std::tuple< image *, image * > resource_tuple;
    typedef std::pair< image *, bool > detection_pair;
    typedef std::tuple< detection_pair, detection_pair > detection_tuple;

Next, the queue_node that holds the images buffers is created, along with the two join nodes. Again, note that the resource_join is using the reserving policy, while detection_join uses the tag_matchingpolicy. To use tag_matching, the user must provide functors that can extract the tag from the item; these appear as the additional arguments to the constructor.

    queue_node< image * > buffers( g );
    join_node< resource_tuple, reserving > resource_join( g );
    join_node< detection_tuple, tag_matching > detection_join( g,
[](const detection_pair &p) -> size_t { return (size_t)p.first; },
            [](const detection_pair &p) -> size_t { return (size_t)p.first; }  );

Next, the nodes that execute the user’s code are created, including the source_node and the four function_nodes. The user’s code is passed to each node using a C++ lambda expression ( a function object could also be used ). For the most part, each lambda expression is a bit of wrapper code that calls the functions that were described earlier, obtaining inputs and creating outputs as necessary. The make_edge calls wire together the nodes as shown in Figure 1.

    source_node< image * > src( g,
                                []( image* &next_image ) -> bool {
                                    next_image = get_next_image();
                                    if ( next_image ) return true;
                                    else return false;
                                }
                              );
    make_edge(src, input_port<0>(resource_join) );
    make_edge(buffers, input_port<1>(resource_join) );

    function_node< resource_tuple, image * >
        preprocess_function( g, unlimited,
                             []( const resource_tuple &in ) -> image * {
                                 image *input_image = std::get<0>(in);
                                 image *output_image = std::get<1>(in);
                                 preprocess_image( input_image, output_image );
                                 delete input_image;
                                 return output_image;
                             }
                           );

    make_edge(resource_join, preprocess_function );

    function_node< image *, detection_pair >
        detect_A( g, unlimited,
                 []( image *input_image ) -> detection_pair {
                    bool r = detect_with_A( input_image );
                    return std::make_pair( input_image, r );
                 }
               );

    function_node< image *, detection_pair >
        detect_B( g, unlimited,
                 []( image *input_image ) -> detection_pair {
                    bool r = detect_with_B( input_image );
                    return std::make_pair( input_image, r );
                 }
               );

    make_edge(preprocess_function, detect_A );
    make_edge(detect_A, input_port<0>(detection_join) );
    make_edge(preprocess_function, detect_B );
    make_edge(detect_B, input_port<1>(detection_join) );

    function_node< detection_tuple, image * >
        decide( g, serial,
                 []( const detection_tuple &t ) -> image * {
                     const detection_pair &a = std::get<0>(t);
                     const detection_pair &b = std::get<1>(t);
                     image *img = a.first;
                     if ( a.second || b.second ) {
                         output_image( img, a.second, b.second );
                     }
                     return img;
                 }
               );

    make_edge(detection_join, decide);
    make_edge(decide, buffers);

Because of the reserving join node at the front of the graph, the graph will remain idle until there are image buffers available in the buffers queue. The for-loop below allocates and puts buffers into the queue. After the loop, the call to g.wait_for_all() will block until the graph again becomes idle when all images are processed.

    // Put image buffers into the buffer queue
    for ( int i = 0; i < num_graph_buffers; ++i ) {
        image *img = new image;
        buffers.try_put( img );
    }
    g.wait_for_all();

When the graph is idle, all of the buffers will again be in the buffers queue. The queue_node therefore needs to be drained and the buffers deallocated.:

    for ( int i = 0; i < num_graph_buffers; ++i ) {
        image *img = NULL;
        if ( !buffers.try_get(img) )
            printf("ERROR: lost a buffer\n");
        else
            delete img;
    }
return 0;

I hope that this feature-detection example demonstrates how a reasonably complex flow graph that passes messages between nodes can be implemented. To learn more about the new features in Intel® Threading Building Blocks 4.0, visit http://www.threadingbuildingblocks.org or to learn more about the Intel® TBB flow graph, check-out the other blog articles at /en-us/blogs/tag/flow_graph/.

For more complete information about compiler optimizations, see our Optimization Notice.
Tags:

 
 

翻译:使用tbb实现特征检测的例子的更多相关文章

  1. Flex中如何通过showAllDataTips属性使鼠标移动到图表时显示所有的数据Tips的例子

    原文 http://blog.minidx.com/2008/11/10/1616.html 接下来的例子演示了Flex中如何通过showAllDataTips属性,使鼠标移动到图表时显示所有的数据T ...

  2. Flex中如何通过horizontalTickAligned和verticalTickAligned样式指定线图LineChart横竖方向轴心标记的例子

    原文http://blog.minidx.com/2008/12/03/1669.html 接下来的例子演示了Flex中如何通过horizontalTickAligned和verticalTickAl ...

  3. Flex中如何通过设置GridLines对象的horizontalAlternateFill样式交错显示LineSeries图表背景颜色的例子

    原文 http://blog.minidx.com/2008/11/27/1652.html 接下来的例子演示了Flex中如何通过设置GridLines对象的horizontalAlternateFi ...

  4. 推荐《用Python进行自然语言处理》中文翻译-NLTK配套书

    NLTK配套书<用Python进行自然语言处理>(Natural Language Processing with Python)已经出版好几年了,但是国内一直没有翻译的中文版,虽然读英文 ...

  5. Django字符串翻译

    文章出处:https://www.jb51.net/article/70077.htm Django模板使用两种模板标签,且语法格式与Python代码有些许不同. 为了使得模板访问到标签,需要将 {% ...

  6. 【Python3 爬虫】02_利用urllib.urlopen向百度翻译发送数据并返回结果

    上一节进行了网页的简单抓取,接下来我们详细的了解一下两个重要的参数url与data urlopen详解 urllib.request.urlopen(url, data=None, [timeout, ...

  7. Google 翻译如何获取 tk 参数值?

    1.首先获取 TKK 参数,这个参数可以在 https://translate.google.com 网页获取, src:TKK=eval('((function(){var a\x3d2089517 ...

  8. 基于DDD的现代ASP.NET开发框架--ABP系列文章总目录

    ABP相关岗位招聘:给热爱.NET新技术和ABP框架的朋友带来一个高薪的工作机会 ABP交流会录像视频:ABP架构设计交流群-7月18日上海线下交流会的内容分享(有高清录像视频的链接) 代码自动生成: ...

  9. 一个App Widget实例第一次创建时被调用

    事实上已经有很多的所谓的路由框架做到这一点,我也没有去研究别的,加上一直对backbone这个框架的评价不错,所以就琢磨着怎么用它实现我所需要的SPA的url管理了. 比如,你可能会说"如果 ...

随机推荐

  1. [转载]提高rails new时bundle install运行速度

    最近在新建rails项目时,rails new老是卡在bundle install那里,少则五分钟,多则几十分.这是因为rails new时自动会运行bundle install,而bundle in ...

  2. [转]Caffe 深度学习框架上手教程

    Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281   blink 15年1月 6   Caffe448是一个清 ...

  3. Centos6.X下安装php nginx mysql 环境

    ---------------------------------------更换163软件源,此步可以省略,记得把repo文件里面的6.5改成当前版本号 yum makecache &&am ...

  4. MySQL报错“1366 - Incorrect integer value: '' XXXXXXX' at row 1 ”

    出现这个错误是因为我在表中插入了一条含有中文字符的语句: 修改方法:(两种) 1:命令行  set names gbk:(此为设置通信编码) 2:my.ini中查找sql-mode 将 sql-mod ...

  5. 编程语言java-并发(锁)

    文章转载自http://www.importnew.com/22078.html 悲观锁和乐观锁 我们都知道,CPU是时分复用的,就是CPU把时间片,分配给不同的thread/process轮流执行, ...

  6. 用JQuery的Ajax对表进行处理的一些小笔记

    --示例INSERT INTO 表名 ( 参数 )VALUES(@+参数),new SqlParameter("@参数", 值);注:配合SqlHelper使用. 一.Load() ...

  7. FME规划数据GIS更新入库

    规划数据经过转换处理入库GIS,城市规划的特殊性,使得GIS里面数据经过分析处理后直接导出为CAD数据的话,肯定难以满足原来规划的要求,这个是硬伤.又要用GIS来进行空间分析处理统计,数据管理就必须了 ...

  8. 跟服务器交互的Web表单(form)

    使用HTML来构建可以跟服务器交互的Web表单(form),通过给你的form元素添加一个action属性来达到此目的. action属性的值指定了表单提交到服务器的地址. 例如: <form ...

  9. hibernate连接查询

    Hibernate的HQL语言类似于SQL语言,更适合于Java面向对象的思想. 类与数据库映射好了,不必考虑数据库. 实现Class1的表与Class2的表的联合查询: Class1的class2属 ...

  10. poj 1035 Spell checker

    Spell checker Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u   J ...