题目链接:

3288: Mato矩阵

Time Limit: 10 Sec  Memory Limit: 128 MB

Description

Mato同学最近正在研究一种矩阵,这种矩阵有n行n列第i行第j列的数为gcd(i,j)。
例如n=5时,矩阵如下:

1 1 1 1 1
1 2 1 2 1
1 1 3 1 1
1 2 1 4 1
1 1 1 1 5

Mato想知道这个矩阵的行列式的值,你能求出来吗?

Input

一个正整数n mod1000000007

Output

n行n列的Mato矩阵的行列式。

Sample Input

5

Sample Output

16
 
题意:
 
思路:
 
进行行列变换后得到对角行列式,结果就是对角行列式的对角线上的积,变换后是欧拉函数值;
 
AC代码:
 
/**************************************************************
Problem: 3288
User: LittlePointer
Language: C++
Result: Accepted
Time:572 ms
Memory:5196 kb
****************************************************************/ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=1e5+20;
const int maxn=1e6+4;
const double eps=1e-12; int phi[maxn]; inline LL solve(int le)
{
LL sum=1;
for(int i=2;i<=le;i++)
{
if(!phi[i])
{
for(int j=i;j<=le;j+=i)
{
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
sum=sum*phi[i]%mod;
}
return sum;
} int main()
{
int n;
read(n);
cout<<solve(n)<<"\n";
return 0;
}

  

bzoj-3288 3288: Mato矩阵(数论)的更多相关文章

  1. BZOJ3288: Mato矩阵(欧拉函数 高斯消元)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 386  Solved: 296[Submit][Status][Discuss] Descriptio ...

  2. BZOJ 3288: Mato矩阵

    Description 一个 \(n*n\) 行列式,\((i,j)=gcd(i,j)\) Sol 线性筛. 这道题神奇的筛出来 \(phi\) ... 打表可以发现,一个数会被他所有的因子减掉因子的 ...

  3. BZOJ 3288 Mato矩阵 解题报告

    这个题好神呀..Orz taorunz 有一个结论,这个结论感觉很优美: $$ans = \prod_{i=1}^{n}\varphi(i)$$ 至于为什么呢,大概是这样子的: 对于每个数字 $x$, ...

  4. [BZOJ 1048] [HAOI2007] 分割矩阵 【记忆化搜索】

    题目链接:BZOJ - 1048 题目分析 感觉这种分割矩阵之类的题目很多都是这样子的. 方差中用到的平均数是可以直接算出来的,然后记忆化搜索 Solve(x, xx, y, yy, k) 表示横坐标 ...

  5. 【BZOJ】【2219】数论之神

    中国剩余定理+原根+扩展欧几里得+BSGS 题解:http://blog.csdn.net/regina8023/article/details/44863519 新技能get√: LL Get_yu ...

  6. BZOJ3288 Mato矩阵

    网上说高斯消元得到下三角矩阵然后都是phi(i)...反着我是搞不出来 打个表什么的还是能看出来点奇怪的东西,比如后面能整除前面的,然后再乱搞吧2333 /********************** ...

  7. 【BZOJ】3289: Mato的文件管理(莫队算法+树状数组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3289 很裸的莫队... 离线了区间然后分块排序后,询问时搞搞就行了. 本题中,如果知道$[l, r] ...

  8. 【BZOJ】1059: [ZJOI2007]矩阵游戏(二分图匹配)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1059 本题可以看出,无论怎样变化,在同一行和同一列的数永远都不会分手---还是吐槽,,我第一眼yy了 ...

  9. BZOJ 1297 迷路(矩阵)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1297 题意:给出一个带权有向图,权值为1-9,顶点个数最多为10.从1出发恰好在T时刻到 ...

随机推荐

  1. 【poj 3167】Cow Patterns(字符串--KMP匹配+数据结构--树状数组)

    题意:给2个数字序列 a 和 b ,问按从小到达排序后,a中的哪些子串与b的名次匹配. a 的长度 N≤100,000,b的长度 M≤25,000,数字的大小 K≤25. 解法:[思考]1.X 暴力. ...

  2. PHP获取APK的包信息

    这段时间太忙了,一个月没有写博客了,稍微闲下来就感觉把在开发中遇到的问题记录下来 php上传安卓apk包的时候,需要获取安卓apk包内的信息 <?php /*解析安卓apk包中的压缩XML文件, ...

  3. Mvc下异步断点续传大文件

    最近公司一同事咨询了一个MVC项目下上传大文件时遇到的问题,问题描述如下: MVC项目中,当上传比较大的文件时,速度非常慢,小文件基本没有影响. 原因分析: 如果是用传统的form表单去提交的话,会将 ...

  4. C# 枚举、字符串、值的相互转换

    using  System; class  Program{    public   enum  Color   {      Red  =   0xff0000 ,      Orange  =   ...

  5. spring task定时器笔记

    定时器有两种方式 1.延迟启动 <bean id="timerTaskRunnerChain" class="bingo.uam.task.TimerTaskRun ...

  6. [WCF REST] Web消息主体风格(Message Body Style)

    对于Web HTTP编程模型来说,服务契约中作为操作的方法无须应用OperationContractAttribute特性,只需要根据需要应用WebGetAttribute与WebInvokeAttr ...

  7. 解决Sharepoint每天第一次打开速度慢的问题

    每天第一次打开Sharepoint的网站会非常慢,下面是解决这个问题的几个方法. 添加crl.microsoft.com到Hosts文件,IP地址指向服务器本机. 允许服务器直接连接到crl.micr ...

  8. Step by step configuration of Outgoing Emails from SharePoint to Microsoft Online

    First of all your SharePoint server should be added to Microsoft online safe sender list, so that Sh ...

  9. SharePoint 2010: Nailing the error "The Security Token Service is unavailable"

    http://blogs.technet.com/b/sykhad-msft/archive/2012/02/25/sharepoint-2010-nailing-the-error-quot-the ...

  10. Sharepoint学习笔记—习题系列--70-573习题解析 -(Q66-Q69)

    Question 66You have a custom theme named MyTheme. The theme is defined in a file named MyTheme.thmx. ...