题目链接:

3288: Mato矩阵

Time Limit: 10 Sec  Memory Limit: 128 MB

Description

Mato同学最近正在研究一种矩阵,这种矩阵有n行n列第i行第j列的数为gcd(i,j)。
例如n=5时,矩阵如下:

1 1 1 1 1
1 2 1 2 1
1 1 3 1 1
1 2 1 4 1
1 1 1 1 5

Mato想知道这个矩阵的行列式的值,你能求出来吗?

Input

一个正整数n mod1000000007

Output

n行n列的Mato矩阵的行列式。

Sample Input

5

Sample Output

16
 
题意:
 
思路:
 
进行行列变换后得到对角行列式,结果就是对角行列式的对角线上的积,变换后是欧拉函数值;
 
AC代码:
 
/**************************************************************
Problem: 3288
User: LittlePointer
Language: C++
Result: Accepted
Time:572 ms
Memory:5196 kb
****************************************************************/ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=1e5+20;
const int maxn=1e6+4;
const double eps=1e-12; int phi[maxn]; inline LL solve(int le)
{
LL sum=1;
for(int i=2;i<=le;i++)
{
if(!phi[i])
{
for(int j=i;j<=le;j+=i)
{
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
sum=sum*phi[i]%mod;
}
return sum;
} int main()
{
int n;
read(n);
cout<<solve(n)<<"\n";
return 0;
}

  

bzoj-3288 3288: Mato矩阵(数论)的更多相关文章

  1. BZOJ3288: Mato矩阵(欧拉函数 高斯消元)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 386  Solved: 296[Submit][Status][Discuss] Descriptio ...

  2. BZOJ 3288: Mato矩阵

    Description 一个 \(n*n\) 行列式,\((i,j)=gcd(i,j)\) Sol 线性筛. 这道题神奇的筛出来 \(phi\) ... 打表可以发现,一个数会被他所有的因子减掉因子的 ...

  3. BZOJ 3288 Mato矩阵 解题报告

    这个题好神呀..Orz taorunz 有一个结论,这个结论感觉很优美: $$ans = \prod_{i=1}^{n}\varphi(i)$$ 至于为什么呢,大概是这样子的: 对于每个数字 $x$, ...

  4. [BZOJ 1048] [HAOI2007] 分割矩阵 【记忆化搜索】

    题目链接:BZOJ - 1048 题目分析 感觉这种分割矩阵之类的题目很多都是这样子的. 方差中用到的平均数是可以直接算出来的,然后记忆化搜索 Solve(x, xx, y, yy, k) 表示横坐标 ...

  5. 【BZOJ】【2219】数论之神

    中国剩余定理+原根+扩展欧几里得+BSGS 题解:http://blog.csdn.net/regina8023/article/details/44863519 新技能get√: LL Get_yu ...

  6. BZOJ3288 Mato矩阵

    网上说高斯消元得到下三角矩阵然后都是phi(i)...反着我是搞不出来 打个表什么的还是能看出来点奇怪的东西,比如后面能整除前面的,然后再乱搞吧2333 /********************** ...

  7. 【BZOJ】3289: Mato的文件管理(莫队算法+树状数组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3289 很裸的莫队... 离线了区间然后分块排序后,询问时搞搞就行了. 本题中,如果知道$[l, r] ...

  8. 【BZOJ】1059: [ZJOI2007]矩阵游戏(二分图匹配)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1059 本题可以看出,无论怎样变化,在同一行和同一列的数永远都不会分手---还是吐槽,,我第一眼yy了 ...

  9. BZOJ 1297 迷路(矩阵)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1297 题意:给出一个带权有向图,权值为1-9,顶点个数最多为10.从1出发恰好在T时刻到 ...

随机推荐

  1. javascript小知识点

    大家对input中的value值研究的透彻么,今天看到一篇博客,很神奇  然后研究了一下input中的value值到底对应的是啥值 1.input中的value,这是大家在开发中进场遇到的一个问题 & ...

  2. 初学Node(六)搭建一个简单的服务器

    搭建一个简单的服务器 通过下面的代码可以搭建一个简单的服务器: var http = require("http"); http.createServer(function(req ...

  3. CSS 属性 - 伪类和伪元素的区别

    伪类和伪元素皆独立于文档结构.它们获取元素的途径也不是基于id.class.属性这些基础的元素特征,而是在处于特殊状态的元素(伪类),或者是元素中特别的内容(伪元素).区别总结如下: ①写法不一样: ...

  4. SharePoint 2013: Search Architecture in SPC202

    http://social.technet.microsoft.com/wiki/contents/articles/15989.sharepoint-2013-search-architecture ...

  5. C++非类型模板参数

    对于函数模板与类模板,模板参数并不局限于类型,普通值也可以作为模板参数.在基于类型参数的模板中,你定义了一些具体的细节来加以确定代码,直到代码被调用时这些细节才被真正的确定.但是在这里,我们面对的是这 ...

  6. Hibernate框架的基本搭建(一个小的java project的测试向数据库中插入和查询数据的功能)

    Hibernate介绍:Hibernate是一种“对象-关系型数据映射组件”,它使用映射文件将对象(object)与关系型数据(Relational)相关联,在Hibernate中映射文件通常以&qu ...

  7. object-c中的类目,延展,协议

    协议 协议只有方法的声明(类似于其他编程语言的接口)   协议相当于大家都所遵循的 关键字 @protocol 协议名 <所遵循的协议> 默认NSObject   @end     @pr ...

  8. OC中NSArray

    #import <Foundation/Foundation.h> int main(int argc, const char * argv[]) { @autoreleasepool { ...

  9. CocoaPods:管理Objective-c 程序中各种第三方开源库关联

    在我们的iOS程序中,经常会用到多个第三方的开源库,通常做法是去下载最新版本的开源库,然后拖拽到工程中. 但是,第三方开源库的数量一旦比较多,版本的管理就非常的麻烦.有没有什么办法可以简化对第三方库的 ...

  10. 关于git

    一.Git基础教程  01.[入门练习]廖雪峰 git教程网:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8 ...