opencv 3.0 DPM cascade contrib模块

转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/

在opencv3.0 中 加入DPM检测的C++代码,目前开源的DPMC++代码不多,在2.4的opencv 版本中,DPM模块中在检测时用的是latentSVM,这个是标准的DPM matlab源码中使用的分类器,不过在在voc_release 5.01版本中已经也加入了cascade。这一版本的C++ DPM也加入了级联分类器,并做了TBB和openMP加速,先晒一张TBB加速后的图

x64, release 开启TBB加速,TBB加速的效果比较明显,在0.5S左右

目前工程化的代码比较少,在这之前我还试了yuxiaoguo 的DPM代码,这里我放一个链接yuxiaoguo,作者的硕士毕设完成的是将DPM源码实现了C++的版本,并做了不少优化。

首先感谢这么有奉献精神的人士,让大家在学习应用DPM的时候有了更多的资源,他已经开源了,相关的代码可以在其博客上下到,首先的性能还不错。

今天我主要说一下怎么跑opencv 3.0 中的DPM代码,需要说明的是在3.0模块中,DPm的相关部分已经被剥离了,在opencv_contrib这个模块中,这里给出模块的github链接,必须到上面去下,原始的3.0SDK中已经没有了

下面是链接

https://github.com/Itseez/opencv_contrib

你可以直接把代码建工程,链接到相应的另外的opencv库,也可以直接把模块编译进去,生成库文件

生成库文件的具体步骤如下:

http://segmentfault.com/a/1190000003496009

但是我跟着步骤,用cmake做了configure,去除了部分没有的选项,添加了额外的contrib module,configure generate没有任何报错,在用visual studio 2013 打开工程,在cmake targets 中直接Build install,生成的时候报了不少错,因为着急看效果,因此也懒得折腾了,如果谁有碰到opencv编译报错,可以把相关的处理过程贴一下。

DPM +TBB and openMP

这一版本的opencv DPM检测代码加入了TBB并行加速和openMP并行加速,有个开关可以控制

开启TBB加速

需要定义HAVE_TBB这个宏,不想在文件里加的话,直接全局生效,右键点击工程-->属性-->c/c++-->预处理器-->预处理器定义,点击下拉框中的编辑里天机即可

接着还需要下载tbb这个库,TBB是英特尔推出的并行库

这里是官网链接https://www.threadingbuildingblocks.org

具体的配置我就不再详述了,跟opencv 配置一样,添加path变量,在工程属性页中添加include头文件路径和相应的库目录和链接的库名字


开启openMP加速

直接在工程的属性页中C++页卡,语言下面选择openMP支持即可

因此我这里选择了直接建立工程,直接把项目clone 到本地,打开DPM的文件夹,

建立工程列表如下:

主函数:

#include "dpm.hpp"
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp> #include <stdio.h>
#include <iostream>
#include <fstream> using namespace cv;
using namespace cv::dpm;
using namespace std; int save_results(const string id, const vector<DPMDetector::ObjectDetection> ds, ofstream &out); static void help()
{
cout << "\nThis example shows object detection on image sequences using \"Deformable Part-based Model (DPM) cascade detection API\n"
"Call:\n"
"./example_dpm_cascade_detect_sequence <model_path> <image_dir>\n"
"The image names has to be provided in \"files.txt\" under <image_dir>.\n"
<< endl;
} static bool readImageLists( const string &file, vector<string> &imgFileList)
{
ifstream in(file.c_str(), ios::binary); if (in.is_open())
{
while (in)
{
string line;
getline(in, line);
imgFileList.push_back(line);
}
return true;
}
else
{
cerr << "Invalid image index file: " << file << endl;
return false;
}
} void drawBoxes(Mat &frame,
vector<DPMDetector::ObjectDetection> ds,
Scalar color,
string text); int main( int argc, char** argv )
{
const char* keys =
{
"{@model_path | | Path of the DPM cascade model}"
"{@image_dir | | Directory of the images }"
}; CommandLineParser parser(argc, argv, keys);
//string model_path(parser.get<string>(0));
//string image_dir(parser.get<string>(1));
//string image_list = image_dir + "/files.txt"; string model_path ="D:\\WorkSpace\\VS_Projects\\opencv_dpm\\opencv_dpm\\inriaperson.xml";
string image_dir = "D:\\DataSet\\INRIAPerson";
string image_list = "D:\\DataSet\\INRIAPerson\\Test\\pos1.lst"; if( model_path.empty() || image_dir.empty() )
{
help();
return -1;
} vector<string> imgFileList;
if ( !readImageLists(image_list, imgFileList) )
return -1; #ifdef HAVE_TBB
cout << "Running with TBB" << endl;
#else
#ifdef _OPENMP
cout << "Running with OpenMP" << endl;
#else
cout << "Running without OpenMP and without TBB" << endl;
#endif
#endif cv::Ptr<DPMDetector> detector = \
DPMDetector::create(vector<string>(1, model_path)); namedWindow("DPM Cascade Detection", 1);
// the color of the rectangle
Scalar color(0, 255, 255); // yellow
Mat frame; for (size_t i = 0; i < imgFileList.size(); i++)
{
double t = (double) getTickCount();
vector<DPMDetector::ObjectDetection> ds; string imageFile = image_dir + "\\" + imgFileList[i];
Mat image = imread(imageFile); frame = image.clone(); if (image.empty()) {
cerr << "\nInvalid image:\n" << imgFileList[i] << endl;
return -1;
} // detection
detector->detect(image, ds);
// compute frame per second (fps)
t = ((double) getTickCount() - t)/getTickFrequency();//elapsed time
cout << t << endl;
// draw boxes
string text = format("%0.1f fps", 1.0/t);
drawBoxes(frame, ds, color, text); // show detections
imshow("DPM Cascade Detection", frame); waitKey(0);
//if ( waitKey(30) >= 0)
// break;
} return 0;
} void drawBoxes(Mat &frame, \
vector<DPMDetector::ObjectDetection> ds, Scalar color, string text)
{
for (unsigned int i = 0; i < ds.size(); i++)
{
rectangle(frame, ds[i].rect, color, 2);
} // draw text on image
Scalar textColor(0,0,250);
putText(frame, text, Point(10,50), FONT_HERSHEY_PLAIN, 2, textColor, 2);
}

在x64 release 模式下,图像的分辨率480*360,测试的是Inria行人数据集

不开加速的检测时间如下:大约在0.6~0.7秒之间

x64, release 开启TBB加速,TBB加速的效果比较明显,在0.5S左右

x64, release 开启openMP加速,openMP加速不如TBB加速明显,在0.5S~0.6S之间

代码写的非常规整,有较高的参考价值

opencv 3.0 DPM Cascade 检测 (附带TBB和openMP加速)的更多相关文章

  1. OpenCV 学习笔记 07 目标检测与识别

    目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV ...

  2. OpenCV实战:人脸关键点检测(FaceMark)

    Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author:    Amusi Date:       2018-03-20 ...

  3. 基于OpenCV读取摄像头进行人脸检测和人脸识别

    前段时间使用OpenCV的库函数实现了人脸检测和人脸识别,笔者的实验环境为VS2010+OpenCV2.4.4,opencv的环境配置网上有很多,不再赘述.检测的代码网上很多,记不清楚从哪儿copy的 ...

  4. cvSmooth函数 和 OpenCV自带的人脸检测

    记录cvSmooth函数的用法和 OpenCV自带的人脸检测. (1)cvSmooth函数 void cvSmooth( const CvArr* src, CvArr* dst,int smooth ...

  5. Install OpenCV 3.0 and Python 2.7+ on OSX

    http://www.pyimagesearch.com/2015/06/15/install-OpenCV-3-0-and-Python-2-7-on-osx/ As I mentioned las ...

  6. 基于opencv和qt的人脸检测小系统

    摘要:利用opencv读取视频.图片并检测人脸,利用QT显示窗口,功能选择等 环境:Ubuntu18.04.OpenCV3.4.0.QT5.10.1 效果图: 代码如下(比较简单没什么注释): mai ...

  7. 常用的OpenCV 2.0函数速查

    OpenCV 2.0函数释义列表 1.cvLoadImage:将图像文件加载至内存: 2.cvNamedWindow:在屏幕上创建一个窗口: 3.cvShowImage:在一个已创建好的窗口中显示图像 ...

  8. ubantu16.04+mxnet +opencv+cuda8.0 环境搭建

    ubantu16.04+mxnet +opencv+cuda8.0 环境搭建 建议:环境搭建完成之后,不要更新系统(内核) 转载请注明出处: 微微苏荷 一 我的安装环境 系统:ubuntu16.04 ...

  9. Setup QT 5.5.1 + OpenCV 3.0 + Visual Studio 2013 on windows 10

    1. Install Visual studio 2013 community version which is free to use for personal usage. 2. Setup th ...

随机推荐

  1. Python轻量Web框架Flask使用

    http://blog.csdn.net/jacman/article/details/49098819 目录(?)[+] Flask安装 Python开发工具EclipsePyDev准备 Flask ...

  2. 【iOS】通知监听

    下例为:监听文本框  accountField  内容的改变, 当发生改变时, 调用textChange方法(多次).监听结束需要移除通知. - (void)viewDidLoad { [super ...

  3. [翻译]:SQL死锁-阻塞

    一般情况下死锁不是一步到位的,它必须满足特定的条件,然后形成资源的循环依赖才会产生死锁,死锁之前一定会出现阻塞,由阻塞升级才有可能出现死锁,所以我们有必要了解系统中都有哪些已经被阻塞的锁. 我在解决共 ...

  4. bootstrap 弹出框点击其他区域时弹出框不消失选项设置

    默认情况下,bootstrap 弹出框点击其他区域时,弹出框会自动关闭,在很多时候,我们可能会希望达到和原生弹出框一样的效果,避免不小心点击其他区域时弹框自动隐藏,尤其是对于一些复杂的表单,重复填写可 ...

  5. HTML CSS样式表布局

    一.position:fixed 锁定位置(相对于浏览器的位置),例如有些网站的右下角的弹出窗口. 示例: 二.position:absolute 1.外层没有position:absolute(或r ...

  6. 实验12:Problem F: 求平均年龄

    Home Web Board ProblemSet Standing Status Statistics   Problem F: 求平均年龄 Problem F: 求平均年龄 Time Limit: ...

  7. [C/C++] VS 2015 C++ 插件

    Visual Studio2015 Community一些必备插件 ReSharper C++ 各种语言版本的代码重构,代码风格,代码修正功能,非常强大,可惜不是免费的,不过好在可以破解呢. Vias ...

  8. 2015年第14本(英文第10本):The A.B.C. Murders (A.B.C谋杀案)

    书名:The ABC Murders 推荐指数:5星 作者:Agatha Christie 单词数:7万 不重复单词数:不详 首万词不重复单词数:不详 蓝思值:740 阅读时间:2015年7月18日 ...

  9. 实战2--应用EL表达式显示投票结果

    (1)编写index.jsp页面,用于收集投票信息 <%@ page language="java" pageEncoding="GBK"%> &l ...

  10. HBase体系结构剖析

    本文出自:http://wuyudong.com/archives/154 在上篇文章<HBase简介>中,已经提到过,HBase中的Table中的所有行都按照row key的字典序排列, ...