Reducejoin sample
示例文件同sample join analysis
之前的示例是使用map端的join.这次使用reduce端的join.
根据源的类别写不同的mapper,处理不同的文件,输出的key都是studentno.value是其他的信息同时加上类别信息。
然后使用multipleinputs不同的路径注册不同的mapper.
reduce端相同的studentno的学生信息和考试成绩分配给同一个reduce,而且value中包含了这些信息,
把这些信息抽取出来,再做笛卡尔积即可。
下面的示例代码中,我没有使用multipleinputs来处理,自己修改了TextInputFormat的一些信息,使用返回文件名和当前行的信息。
根据文件名我在mapper中处理两个不同文件的信息,加上不同的类别送出去。
下面的代码中还有很多可以优化的地方,以后再更新。
package myexamples; import java.io.IOException;
import java.util.ArrayList;
import java.util.List; import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.LineRecordReader;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.LineReader; public class reducejoin { public static class MyTextInputFormat extends FileInputFormat<Text, Text> { @Override
public MyLineRecordReader createRecordReader(InputSplit split,
TaskAttemptContext context) {
return new MyLineRecordReader();
} @Override
protected boolean isSplitable(JobContext context, Path file) {
CompressionCodec codec = new CompressionCodecFactory(
context.getConfiguration()).getCodec(file);
return codec == null;
} } public static class MyLineRecordReader extends RecordReader<Text, Text> {
private static final Log LOG = LogFactory
.getLog(LineRecordReader.class); private CompressionCodecFactory compressionCodecs = null;
private long start;
private long pos;
private long end;
private LineReader in;
private int maxLineLength;
private Text key = null;
private Text value = null; Text filename = null; public void initialize(InputSplit genericSplit,
TaskAttemptContext context) throws IOException {
FileSplit split = (FileSplit) genericSplit;
Configuration job = context.getConfiguration();
this.maxLineLength = job.getInt(
"mapred.linerecordreader.maxlength", Integer.MAX_VALUE);
start = split.getStart();
end = start + split.getLength();
final Path file = split.getPath();
key = new Text(file.getName());
compressionCodecs = new CompressionCodecFactory(job);
final CompressionCodec codec = compressionCodecs.getCodec(file); // open the file and seek to the start of the split
FileSystem fs = file.getFileSystem(job);
FSDataInputStream fileIn = fs.open(split.getPath());
boolean skipFirstLine = false;
if (codec != null) {
in = new LineReader(codec.createInputStream(fileIn), job);
end = Long.MAX_VALUE;
} else {
if (start != 0) {
skipFirstLine = true;
--start;
fileIn.seek(start);
}
in = new LineReader(fileIn, job);
}
if (skipFirstLine) { // skip first line and re-establish "start".
start += in.readLine(new Text(), 0,
(int) Math.min((long) Integer.MAX_VALUE, end - start));
}
this.pos = start;
} public boolean nextKeyValue() throws IOException {
if (key == null) { } if (value == null) {
value = new Text();
}
int newSize = 0;
while (pos < end) {
newSize = in.readLine(value, maxLineLength, Math.max(
(int) Math.min(Integer.MAX_VALUE, end - pos),
maxLineLength));
if (newSize == 0) {
break;
}
pos += newSize;
if (newSize < maxLineLength) {
break;
} // line too long. try again
LOG.info("Skipped line of size " + newSize + " at pos "
+ (pos - newSize));
}
if (newSize == 0) {
key = null;
value = null;
return false;
} else {
return true;
}
} @Override
public Text getCurrentKey() {
return key;
} @Override
public Text getCurrentValue() {
return value;
} /**
* Get the progress within the split
*/
public float getProgress() {
if (start == end) {
return 0.0f;
} else {
return Math.min(1.0f, (pos - start) / (float) (end - start));
}
} public synchronized void close() throws IOException {
if (in != null) {
in.close();
}
}
} public static class studentMapper extends Mapper<Text, Text, Text, Text> {
public void map(Text key, Text value, Context context)
throws IOException, InterruptedException {
Text newvalue = null;
String strv = value.toString().substring(
value.toString().indexOf(","));
if (key.toString().contains("student")) // student file
newvalue = new Text("student" + strv);
else
newvalue = new Text("score" + strv);
Text newkey = new Text(value.toString().substring(0,
value.toString().indexOf(",")));
context.write(newkey, newvalue);
}
} public static class studentReducer extends Reducer<Text, Text, Text, Text> {
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
List<String> students = new ArrayList<String>();
List<String> scores = new ArrayList<String>();
for (Text value : values)
if (value.toString().startsWith("student"))
students.add(value.toString().substring(8));
else
scores.add(value.toString().substring(6));
// split real results
for (String student : students)
for (String score : scores)
context.write(key, new Text(student + "," + score));
}
} public static void main(String[] args) throws Exception {
args = "hdfs://namenode:9000/user/hadoop/student/ hdfs://namenode:9000/user/hadoop/reducejoinout"
.split(" "); Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
} myUtils.myUtils.DeleteFolder(conf, otherArgs[1]);
conf.set("io.sort.mb", "10");
Job job = new Job(conf, "reduce join");
job.setInputFormatClass(MyTextInputFormat.class);
// job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setJarByClass(reducejoin.class);
job.setMapperClass(studentMapper.class);
job.setReducerClass(studentReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
Reducejoin sample的更多相关文章
- MapReduce 示例:减少 Hadoop MapReduce 中的侧连接
摘要:在排序和reducer 阶段,reduce 侧连接过程会产生巨大的网络I/O 流量,在这个阶段,相同键的值被聚集在一起. 本文分享自华为云社区<MapReduce 示例:减少 Hadoop ...
- Linux下UPnP sample分析
一.UPnP简介 UPnP(Universal Plug and Play)技术是一种屏蔽各种数字设备的硬件和操作系统的通信协议.它是一种数字网络中间件技术,建立在TCP/IP.HTTP协 ...
- cocos2d-x for android配置 & 运行 Sample on Linux OS
1.从http://www.cocos2d-x.org/download下载稳定版 比如cocos2d-x-2.2 2.解压cocos2d-x-2.2.zip,比如本文将其解压到 /opt 目录下 3 ...
- android studio2.2 的Find Sample Code点击没有反应
1 . 出现的问题描述: 右键点击Find Sample Code后半天没有反应,然后提示 Samples are currently unavailable for :{**** ...
- jmeter(四)Sample之http请求
启动jmeter,建立一个测试计划 这里再次说说怎么安装和启动jmeter吧,昨天下午又被人问到怎样安装和使用,我也是醉了:在我看来,百度能解决百分之八十的问题,特别是基础的问题... 安装:去官网下 ...
- jcaptcha sample 制作验证码
Skip to end of metadata Created by marc antoine garrigue, last modified by Jeremy Waters on Feb 23, ...
- Python 对不均衡数据进行Over sample(重抽样)
需要重采样的数据文件(Libsvm format),如heart_scale +1 1:0.708333 2:1 3:1 4:-0.320755 5:-0.105023 6:-1 7:1 8:-0.4 ...
- Basic linux command-with detailed sample
Here I will list some parameters which people use very ofen, I will attach the output of the command ...
- 例子:RSS Reader Sample
本例演示了Rss xml信息的获取,以及如何使用SyndicationFeed来进行符合Rss规范的xml进行解析. SyndicationFeed 解析完成后 可以得到SyndicationItem ...
随机推荐
- sencha grid templatecolumn模板列,actioncolumn和renderer实现单元格重绘
templatecolumn列: { xtype: 'templatecolumn', ...
- net 数据库连接详解 相当经典啊
ADO.NET与抽水的故事 ADO.NET是微软新一代.NET数据库的访问架构,ADO是ActiveX Data Objects的缩写.ADO.NET是数据库应用程序和数据源之间沟通的桥梁,主要提供一 ...
- [moka同学笔记]linux服务器防火墙的设置
网站突然打不开:服务器停止了,重启后,防火墙自动启动,导致网站打不开. 1.查看防火墙 systemctl status firewalld 2.关闭防火墙 systemctl stop firewa ...
- 不变(Invariant), 协变(Covarinat), 逆变(Contravariant) : 一个程序猿进化的故事
阿袁工作的第1天: 不变(Invariant), 协变(Covarinat), 逆变(Contravariant)的初次约 阿袁,早!开始工作吧. 阿袁在笔记上写下今天工作清单: 实现一个scala类 ...
- Python正则表达式模块(re模块)
Python是我接触到的第一门编程语言,虽然它足够简单,但是对于当时刚刚接触编程语言的我来说还是有些难度的,于是只是了解了一些Python的基本语法,稍微深入一点的地方都没怎么了解.不过,到现在为止, ...
- ahjesus linux连接阿里云ubuntu服务器并更改默认账号和密码,以及创建子账户
先确保本地Linux服务器SSH服务开启,如果没有开启直接执行指令:service sshd start 然后我们使用ssh指令进行远程登陆 ssh username@ip-address 输入pas ...
- Office2016体验
Microsoft又迎来了更新的季节.对于我来说,win10就算了,不太稳定,特别是遇到一些专业的程序,因为很多行业软件开发.测试环境都是winxp或win7等:VS2015也安上了,但还没用,一直用 ...
- CRM 2013 安装前系统和数据库的基础配置
Win Serer 2012 域控安装参考:http://smallc.blog.51cto.com/926344/1034868 (其中最重要的几步:创建域控(ActiveDirectory域服务 ...
- 二维数组 string[,]
string[,] strArr = { {"101","电脑"}, ...
- UIScrollView循环滚动1
现在基本每一个商业APP都会有循环滚动视图,放一些轮播广告之类的,都是放在UIScrollView之上.假如我要实现N张图片的轮播,我借鉴了几个博文,得到两种方法实现: [第一种]:如下图(图片来源于 ...