示例文件同sample join analysis

之前的示例是使用map端的join.这次使用reduce端的join.

根据源的类别写不同的mapper,处理不同的文件,输出的key都是studentno.value是其他的信息同时加上类别信息。

然后使用multipleinputs不同的路径注册不同的mapper.

reduce端相同的studentno的学生信息和考试成绩分配给同一个reduce,而且value中包含了这些信息,

把这些信息抽取出来,再做笛卡尔积即可。

下面的示例代码中,我没有使用multipleinputs来处理,自己修改了TextInputFormat的一些信息,使用返回文件名和当前行的信息。

根据文件名我在mapper中处理两个不同文件的信息,加上不同的类别送出去。

下面的代码中还有很多可以优化的地方,以后再更新。

package myexamples;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List; import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.LineRecordReader;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.LineReader; public class reducejoin { public static class MyTextInputFormat extends FileInputFormat<Text, Text> { @Override
public MyLineRecordReader createRecordReader(InputSplit split,
TaskAttemptContext context) {
return new MyLineRecordReader();
} @Override
protected boolean isSplitable(JobContext context, Path file) {
CompressionCodec codec = new CompressionCodecFactory(
context.getConfiguration()).getCodec(file);
return codec == null;
} } public static class MyLineRecordReader extends RecordReader<Text, Text> {
private static final Log LOG = LogFactory
.getLog(LineRecordReader.class); private CompressionCodecFactory compressionCodecs = null;
private long start;
private long pos;
private long end;
private LineReader in;
private int maxLineLength;
private Text key = null;
private Text value = null; Text filename = null; public void initialize(InputSplit genericSplit,
TaskAttemptContext context) throws IOException {
FileSplit split = (FileSplit) genericSplit;
Configuration job = context.getConfiguration();
this.maxLineLength = job.getInt(
"mapred.linerecordreader.maxlength", Integer.MAX_VALUE);
start = split.getStart();
end = start + split.getLength();
final Path file = split.getPath();
key = new Text(file.getName());
compressionCodecs = new CompressionCodecFactory(job);
final CompressionCodec codec = compressionCodecs.getCodec(file); // open the file and seek to the start of the split
FileSystem fs = file.getFileSystem(job);
FSDataInputStream fileIn = fs.open(split.getPath());
boolean skipFirstLine = false;
if (codec != null) {
in = new LineReader(codec.createInputStream(fileIn), job);
end = Long.MAX_VALUE;
} else {
if (start != 0) {
skipFirstLine = true;
--start;
fileIn.seek(start);
}
in = new LineReader(fileIn, job);
}
if (skipFirstLine) { // skip first line and re-establish "start".
start += in.readLine(new Text(), 0,
(int) Math.min((long) Integer.MAX_VALUE, end - start));
}
this.pos = start;
} public boolean nextKeyValue() throws IOException {
if (key == null) { } if (value == null) {
value = new Text();
}
int newSize = 0;
while (pos < end) {
newSize = in.readLine(value, maxLineLength, Math.max(
(int) Math.min(Integer.MAX_VALUE, end - pos),
maxLineLength));
if (newSize == 0) {
break;
}
pos += newSize;
if (newSize < maxLineLength) {
break;
} // line too long. try again
LOG.info("Skipped line of size " + newSize + " at pos "
+ (pos - newSize));
}
if (newSize == 0) {
key = null;
value = null;
return false;
} else {
return true;
}
} @Override
public Text getCurrentKey() {
return key;
} @Override
public Text getCurrentValue() {
return value;
} /**
* Get the progress within the split
*/
public float getProgress() {
if (start == end) {
return 0.0f;
} else {
return Math.min(1.0f, (pos - start) / (float) (end - start));
}
} public synchronized void close() throws IOException {
if (in != null) {
in.close();
}
}
} public static class studentMapper extends Mapper<Text, Text, Text, Text> {
public void map(Text key, Text value, Context context)
throws IOException, InterruptedException {
Text newvalue = null;
String strv = value.toString().substring(
value.toString().indexOf(","));
if (key.toString().contains("student")) // student file
newvalue = new Text("student" + strv);
else
newvalue = new Text("score" + strv);
Text newkey = new Text(value.toString().substring(0,
value.toString().indexOf(",")));
context.write(newkey, newvalue);
}
} public static class studentReducer extends Reducer<Text, Text, Text, Text> {
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
List<String> students = new ArrayList<String>();
List<String> scores = new ArrayList<String>();
for (Text value : values)
if (value.toString().startsWith("student"))
students.add(value.toString().substring(8));
else
scores.add(value.toString().substring(6));
// split real results
for (String student : students)
for (String score : scores)
context.write(key, new Text(student + "," + score));
}
} public static void main(String[] args) throws Exception {
args = "hdfs://namenode:9000/user/hadoop/student/ hdfs://namenode:9000/user/hadoop/reducejoinout"
.split(" "); Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
} myUtils.myUtils.DeleteFolder(conf, otherArgs[1]);
conf.set("io.sort.mb", "10");
Job job = new Job(conf, "reduce join");
job.setInputFormatClass(MyTextInputFormat.class);
// job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setJarByClass(reducejoin.class);
job.setMapperClass(studentMapper.class);
job.setReducerClass(studentReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

Reducejoin sample的更多相关文章

  1. MapReduce 示例:减少 Hadoop MapReduce 中的侧连接

    摘要:在排序和reducer 阶段,reduce 侧连接过程会产生巨大的网络I/O 流量,在这个阶段,相同键的值被聚集在一起. 本文分享自华为云社区<MapReduce 示例:减少 Hadoop ...

  2. Linux下UPnP sample分析

        一.UPnP简介   UPnP(Universal Plug and Play)技术是一种屏蔽各种数字设备的硬件和操作系统的通信协议.它是一种数字网络中间件技术,建立在TCP/IP.HTTP协 ...

  3. cocos2d-x for android配置 & 运行 Sample on Linux OS

    1.从http://www.cocos2d-x.org/download下载稳定版 比如cocos2d-x-2.2 2.解压cocos2d-x-2.2.zip,比如本文将其解压到 /opt 目录下 3 ...

  4. android studio2.2 的Find Sample Code点击没有反应

    1 . 出现的问题描述:           右键点击Find Sample Code后半天没有反应,然后提示 Samples are currently unavailable for :{**** ...

  5. jmeter(四)Sample之http请求

    启动jmeter,建立一个测试计划 这里再次说说怎么安装和启动jmeter吧,昨天下午又被人问到怎样安装和使用,我也是醉了:在我看来,百度能解决百分之八十的问题,特别是基础的问题... 安装:去官网下 ...

  6. jcaptcha sample 制作验证码

    Skip to end of metadata Created by marc antoine garrigue, last modified by Jeremy Waters on Feb 23, ...

  7. Python 对不均衡数据进行Over sample(重抽样)

    需要重采样的数据文件(Libsvm format),如heart_scale +1 1:0.708333 2:1 3:1 4:-0.320755 5:-0.105023 6:-1 7:1 8:-0.4 ...

  8. Basic linux command-with detailed sample

    Here I will list some parameters which people use very ofen, I will attach the output of the command ...

  9. 例子:RSS Reader Sample

    本例演示了Rss xml信息的获取,以及如何使用SyndicationFeed来进行符合Rss规范的xml进行解析. SyndicationFeed 解析完成后 可以得到SyndicationItem ...

随机推荐

  1. chrome修改UserAgent,调试

    chrome浏览器模拟 UserAgent,调试手机环境. https://chrome.google.com/webstore/detail/user-agent-switcher-for-c/dj ...

  2. PHP学习笔记:数据库学习心得

    存储过程: 存储过程(Stored Procedure)是一组为了完成特定功能的SQL 语句集,经编译后存储在数据库.中用户通过指定存储过程的名字并给出参数(如果该存储过程带有参数)来执行它. 因为语 ...

  3. mysql命令行备份数据库

    MySQL数据库使用命令行备份|MySQL数据库备份命令 例如: 数据库地址:127.0.0.1 数据库用户名:root 数据库密码:pass 数据库名称:myweb 备份数据库到D盘跟目录 mysq ...

  4. javascript中||和&&代替if

    首先,我们来看一段代码: ; ){ add_level = ; } ){ add_level = ; } ){ add_level = ; } ){ add_level = ; } else { ad ...

  5. JavaScript基础10——node对象

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  6. Bootstrap 我的学习记录3 导航条理解

    以下理论内容copy自Bootstrap中文网 (一个不错的bootstrap学习网站) 导航条 默认样式的导航条 导航条是在您的应用或网站中作为导航页头的响应式基础组件.它们在移动设备上可以折叠(并 ...

  7. Js中的this指向问题

    函数中的this指向和当前函数在哪定义的或者在哪执行的都没有任何的关系分析this指向的规律如下: [非严格模式]1.自执行函数中的this永远是window [案例1] var obj={ fn:( ...

  8. The system clock has been set back more than 24 hours

    由于破解调试需要,更改了系统时间,打开ArcMap会出现"The system clock has been set back more than 24 hours"的错误,原因是 ...

  9. [Microsoft Dynamics CRM 2016]Invalid Action – The selected action was not valid 错误的诱因及解决方法

    详细问题描述: 由于解决windows server 评估版过期\SQL server 评估版过期的问题后而导致的Invalid Action – The selected action was no ...

  10. 导出你的GAC Assembly中的DLLS -- 金大昊(jindahao)

    导出你的GAC Assembly中的DLLS   方法1: CMD命令中,进入C:\windows\assembly,然后XCOPY GAC_MSIL c:\temp /E 这样就得到了dlls了,以 ...