单调队列应用--BZOJ 3831 Little Bird
3831: [Poi2014]Little Bird
Time Limit: 20 Sec Memory Limit: 128 MB
Description
Input
Output
Sample Input
4 6 3 6 3 7 2 6 5
2
2
5
Sample Output
1
HINT
单调队列中的元素主要考虑它的时效性和价值,时效性用来删除队头,价值和时效性综合考虑删除队尾。
单调队列中的时效性是越靠后(在队列中)越好,那么队列中元素的价值是:疲劳值和树高的综合考虑。
注意,如果对于两个位置j1和j2,有f[j1]<f[j2],则j1一定比j2更优。因为就算j1高度比较矮,到达i顶多再多消耗1个疲劳值,顶多和j2相等。如果不需要消耗疲劳值,比j2更优。 如果f[j1]=f[j2],则我们比较它们的高度D,高度高的更优。
#include<cstring>
#define N 1000050
#include<iostream>
using namespace std;
#include<cstdio>
int Q[N],head=,tail=,n,m,k,hig[N];
int f[N];
void input()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
scanf("%d",&hig[i]);
}
bool cmp(int i,int j)
{
if(f[i]!=f[j]) return f[i]<f[j];
return hig[i]>=hig[j];
}
int main()
{
input();
scanf("%d",&m);
for(int i=;i<=m;++i)
{
scanf("%d",&k);
memset(Q,,sizeof(Q));
memset(f,,sizeof(f));
f[]=;head=;tail=;
Q[]=;
for(int j=;j<=n;++j)
{
while(head<tail&&j-Q[head]>k)
head++;
f[j]=f[Q[head]]+(hig[j]>=hig[Q[head]]);
while(head<tail&&cmp(j,Q[tail-]))
tail--;
Q[tail++]=j;
}
printf("%d\n",f[n]);
}
return ;
}
单调队列应用--BZOJ 3831 Little Bird的更多相关文章
- 单调队列优化DP || [Poi2014]Little Bird || BZOJ 3831 || Luogu P3572
题面:[POI2014]PTA-Little Bird 题解: N<=1e6 Q<=25F[i]表示到达第i棵树时需要消耗的最小体力值F[i]=min(F[i],F[j]+(D[j]> ...
- bzoj 3831 Little Bird (单调队列优化dp)
/*先贴个n*n的*/ #include<iostream> #include<cstdio> #include<cstring> #define maxn 100 ...
- 【单调队列】bzoj 1407 [HAOI2007]理想的正方形
[题意] 给定一个n*m的矩阵,求所有大小为k*k的正方形中(最大值-最小值)的最小值 [思路] 先横着算出每一行的长度为k的窗口内的最大值,变成一个n*(m-k+1)的矩阵mx 再竖着算出每一列的长 ...
- Bzoj 3831 [Poi2014]Little Bird
3831: [Poi2014]Little Bird Time Limit: 20 Sec Memory Limit: 128 MB Submit: 310 Solved: 186 [Submit][ ...
- 【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)
1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...
- [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】
题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...
- ●BZOJ 3831 [Poi2014]Little Bird
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3831 题解: 单调队列优化DP 定义 F[i] 为到达第i课树的疲劳值. 显然最暴力的转移就 ...
- 【bzoj 1414】对称的正方形 单调队列+manacher
Description Orez很喜欢搜集一些神秘的数据,并经常把它们排成一个矩阵进行研究.最近,Orez又得到了一些数据,并已经把它们排成了一个n行m列的矩阵.通过观察,Orez发现这些数据蕴涵了一 ...
- BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)
BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...
随机推荐
- [译]PrestaShop开发者指南 第一篇 基础
# 第一篇 基础 PS(PrestaShop简称)一开始就设定了能够在它的基础上很简单的构建第三方模块的机制,让它成为一款具有极高定制性的电子商务软件. PS的可以在三个方面进行定制: * 主题 * ...
- Bootstrap 框架 栅格布局系统设计原理
如果你是初次接触Bootstrap,你一定会为它的栅格布局感到敬佩.事实上,这个布局系统提供了一套响应式的布局解决方案. 既然这么好用,那他是如何用CSS来实现的呢? 我特意去Bootstrap官方下 ...
- Powerbuilder编写身份证校验码
public function boolean of_calc_cardid_verifycode (string as_cardid, ref string as_verifycode); /* 计 ...
- 性能分析之-- JAVA Thread Dump 分析综述
性能分析之-- JAVA Thread Dump 分析综述 一.Thread Dump介绍 1.1什么是Thread Dump? Thread Dump是非常有用的诊断Java应用问题的工 ...
- Angularjs,WebAPI 搭建一个简易权限管理系统 —— Angularjs 前端主体结构(五)
目录 前言 Angularjs名词与概念 Angularjs 基本功能演示 系统业务与实现 WebAPI项目主体结构 Angularjs 前端主体结构 6 Angularjs 前端主体结构 6.1 A ...
- ASP.NET Core1.0 带来的新特性
1.采用新的文件系统,不再通过工程文件(.sln和.csproj)来定义项目文件清单. 解决方案文件还是*.sln,但项目文件变成*.xproj了.在项目文件夹下新增的文件会被自动添加到项目中,不用再 ...
- Android Xutils 框架(转)
Android Xutils 框架 (转) 目录(?)[-] xUtils简介 目前xUtils主要有四大模块 使用xUtils快速开发框架需要有以下权限 混淆时注意事项 DbUtils使用方法 Vi ...
- 用javascript实现全选/反选组件
以下是本人制作的全选/反选 组件,供广大同行参考.指正: 效果如图: 在实现的过程中,全选和全部取消选中这两个功能较为简单,只需用for循环遍历所有复选框为true或false即可.反选也较为简单,也 ...
- 更换SAP主界面右边区域背景主题
1) Tcode:SMW0(注意,最后面是零,不是英文字母O),选择第二个单选按钮 2)点击回车后,直接点击运行按钮. 3)在SAP WEB 资源库:对象显示 页面,点击:新建 4)创建对象名称,名 ...
- Android使用layer-list实现三面边框
layer-list可以将多个图片或形状按照顺序层叠起来 <?xml version="1.0" encoding="utf-8"?> <la ...