3831: [Poi2014]Little Bird

Time Limit: 20 Sec  Memory Limit: 128 MB

Description

In the Byteotian Line Forest there are   trees in a row. On top of the first one, there is a little bird who would like to fly over to the top of the last tree. Being in fact very little, the bird might lack the strength to fly there without any stop. If the bird is sitting on top of the tree no.  , then in a single flight leg it can fly to any of the trees no.i+1,i+2…I+K, and then has to rest afterward.
Moreover, flying up is far harder to flying down. A flight leg is tiresome if it ends in a tree at least as high as the one where is started. Otherwise the flight leg is not tiresome.
The goal is to select the trees on which the little bird will land so that the overall flight is least tiresome, i.e., it has the minimum number of tiresome legs. We note that birds are social creatures, and our bird has a few bird-friends who would also like to get from the first tree to the last one. The stamina of all the birds varies, so the bird's friends may have different values of the parameter  . Help all the birds, little and big!
有一排n棵树,第i棵树的高度是Di。
MHY要从第一棵树到第n棵树去找他的妹子玩。
如果MHY在第i棵树,那么他可以跳到第i+1,i+2,...,i+k棵树。
如果MHY跳到一棵不矮于当前树的树,那么他的劳累值会+1,否则不会。
为了有体力和妹子玩,MHY要最小化劳累值。
 

Input

There is a single integer N(2<=N<=1 000 000) in the first line of the standard input: the number of trees in the Byteotian Line Forest. The second line of input holds   integers D1,D2…Dn(1<=Di<=10^9) separated by single spaces: Di is the height of the i-th tree.
The third line of the input holds a single integer Q(1<=Q<=25): the number of birds whose flights need to be planned. The following Q lines describe these birds: in the i-th of these lines, there is an integer Ki(1<=Ki<=N-1) specifying the i-th bird's stamina. In other words, the maximum number of trees that the i-th bird can pass before it has to rest is Ki-1.

Output

Your program should print exactly Q lines to the standard output. In the I-th line, it should specify the minimum number of tiresome flight legs of the i-th bird.

Sample Input

9
4 6 3 6 3 7 2 6 5
2
2
5

Sample Output

2
1

HINT

Explanation: The first bird may stop at the trees no. 1, 3, 5, 7, 8, 9. Its tiresome flight legs will be the one from the 3-rd tree to the 5-th one and from the 7-th to the 8-th.

单调队列中的元素主要考虑它的时效性和价值,时效性用来删除队头,价值和时效性综合考虑删除队尾。

单调队列中的时效性是越靠后(在队列中)越好,那么队列中元素的价值是:疲劳值和树高的综合考虑。

注意,如果对于两个位置j1和j2,有f[j1]<f[j2],则j1一定比j2更优。因为就算j1高度比较矮,到达i顶多再多消耗1个疲劳值,顶多和j2相等。如果不需要消耗疲劳值,比j2更优。 如果f[j1]=f[j2],则我们比较它们的高度D,高度高的更优。

 #include<cstring>
#define N 1000050
#include<iostream>
using namespace std;
#include<cstdio>
int Q[N],head=,tail=,n,m,k,hig[N];
int f[N];
void input()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
scanf("%d",&hig[i]);
}
bool cmp(int i,int j)
{
if(f[i]!=f[j]) return f[i]<f[j];
return hig[i]>=hig[j];
}
int main()
{
input();
scanf("%d",&m);
for(int i=;i<=m;++i)
{
scanf("%d",&k);
memset(Q,,sizeof(Q));
memset(f,,sizeof(f));
f[]=;head=;tail=;
Q[]=;
for(int j=;j<=n;++j)
{
while(head<tail&&j-Q[head]>k)
head++;
f[j]=f[Q[head]]+(hig[j]>=hig[Q[head]]);
while(head<tail&&cmp(j,Q[tail-]))
tail--;
Q[tail++]=j;
}
printf("%d\n",f[n]);
}
return ;
}

单调队列应用--BZOJ 3831 Little Bird的更多相关文章

  1. 单调队列优化DP || [Poi2014]Little Bird || BZOJ 3831 || Luogu P3572

    题面:[POI2014]PTA-Little Bird 题解: N<=1e6 Q<=25F[i]表示到达第i棵树时需要消耗的最小体力值F[i]=min(F[i],F[j]+(D[j]> ...

  2. bzoj 3831 Little Bird (单调队列优化dp)

    /*先贴个n*n的*/ #include<iostream> #include<cstdio> #include<cstring> #define maxn 100 ...

  3. 【单调队列】bzoj 1407 [HAOI2007]理想的正方形

    [题意] 给定一个n*m的矩阵,求所有大小为k*k的正方形中(最大值-最小值)的最小值 [思路] 先横着算出每一行的长度为k的窗口内的最大值,变成一个n*(m-k+1)的矩阵mx 再竖着算出每一列的长 ...

  4. Bzoj 3831 [Poi2014]Little Bird

    3831: [Poi2014]Little Bird Time Limit: 20 Sec Memory Limit: 128 MB Submit: 310 Solved: 186 [Submit][ ...

  5. 【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  6. [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】

    题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...

  7. ●BZOJ 3831 [Poi2014]Little Bird

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3831 题解: 单调队列优化DP 定义 F[i] 为到达第i课树的疲劳值. 显然最暴力的转移就 ...

  8. 【bzoj 1414】对称的正方形 单调队列+manacher

    Description Orez很喜欢搜集一些神秘的数据,并经常把它们排成一个矩阵进行研究.最近,Orez又得到了一些数据,并已经把它们排成了一个n行m列的矩阵.通过观察,Orez发现这些数据蕴涵了一 ...

  9. BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)

    BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...

随机推荐

  1. EffectiveJava——类层次优于标签类

    标签类: 有时候,可能会遇到带有两种甚至更多钟风格的类的实例的类,并包含表示实例风格的(tag)域.例如下面这个类,它能够表示圆形或者矩形: /** * 类层次优先与标签类 * @author wei ...

  2. expect入门--自动化linux交互式命令

    很多linux程序比如passwd,ftp,scp,ssh等自身并没有提供一种静默式的执行选项,而是依赖于运行时的终端输入来进行后一步的操作比如更改密码.文件上传.下载等.虽然有些编程语言如java嵌 ...

  3. 案例分享:电信行业零售业务CRM架构

    最近跟一个客户讨论销售领域的移动化需求,谈到了他们的零售业务系统的整体框架,觉得很有分享的必要. 这次聊到的客户是电信行业的巨头,说的是他们的零售业务.电信公司么,卖出去的无非是设备和服务.大体的业务 ...

  4. UWP开发-重新理解MVVM

    MVVM是一个比较热门的开发框架,尽管已经出现很久了,仍然比较受欢迎.MVVM框架包括: M:Model:Model指的是数据模型,例如你要在页面展示联系人信息,那么Model就是联系人的模型,包括联 ...

  5. Spring中配置数据源的4种形式(转)

    原文http://blog.csdn.net/orclight/article/details/8616103       不管采用何种持久化技术,都需要定义数据源.Spring中提供了4种不同形式的 ...

  6. 【原】UIView实现点击着重效果的解决方案

    我们知道,在IOS中UIButton UIControl都有一个默认的选中效果,即点中后会图标会变暗,移开后又恢复正常.如何让UIView UIImageView等这些普通的view也实现同样的效果呢 ...

  7. android 进程间通信---Service Manager(1)

    Bind机制由4个部分组成.bind驱动,Client,ServiceManager &Service 1.Bind其实是一个基于linux系统的驱动,目的是为了实现内存共享. bind驱动的 ...

  8. MySQL 强制操作以及order by 使用

    我们以MySQL中常用的hint来进行详细的解析,如果你是经常使用Oracle的朋友可能知道,Oracle的hincvt功能种类很多,对于优化sql语句提供了很多方法. 同样,在MySQL里,也有类似 ...

  9. Asp.net MVC 4新项目中创建area的后续操作

    Asp.net MVC 4新项目中创建area后,往往HomeController与area的HomeController路由发生混淆,需要手工设置一些地方避免mvc无法识别默认路由的状况. 无废话具 ...

  10. 每日Scrum--No.4

    Yesterday:学习迪杰斯特拉算法并进行简单的编写代码 Today:继续编写代码 Problem:变量名的定义出错,造成调用的时候出错,不过改过来就好了.算法的编写不全面,漏掉个别语句,如在调试的 ...