有些时候,我们不仅要对一张图片进行处理,可能还会对一批图片处理。这时候,我们可以通过循环来执行处理,也可以调用程序自带的图片集合来处理。

图片集合函数为:

skimage.io.ImageCollection(load_pattern,load_func=None)

这个函数是放在io模块内的,带两个参数,第一个参数load_pattern, 表示图片组的路径,可以是一个str字符串。第二个参数load_func是一个回调函数,我们对图片进行批量处理就可以通过这个回调函数实现。回调函数默认为imread(),即默认这个函数是批量读取图片。

先看一个例子:

import skimage.io as io
from skimage import data_dir
str=data_dir + '/*.png'
coll = io.ImageCollection(str)
print(len(coll))

显示结果为25, 说明系统自带了25张png的示例图片,这些图片都读取了出来,放在图片集合coll里。如果我们想显示其中一张图片,则可以在后加上一行代码:

io.imshow(coll[10])

显示为:

如果一个文件夹里,我们既存放了一些jpg格式的图片,又存放了一些png格式的图片,现在想把它们全部读取出来,该怎么做呢?

import skimage.io as io
from skimage import data_dir
str='d:/pic/*.jpg:d:/pic/*.png'
coll = io.ImageCollection(str)
print(len(coll))

注意这个地方'd:/pic/*.jpg:d:/pic/*.png' ,是两个字符串合在一起的,第一个是'd:/pic/*.jpg', 第二个是'd:/pic/*.png' ,合在一起后,中间用冒号来隔开,这样就可以把d:/pic/文件夹下的jpg和png格式的图片都读取出来。如果还想读取存放在其它地方的图片,也可以一并加进去,只是中间同样用冒号来隔开。

io.ImageCollection()这个函数省略第二个参数,就是批量读取。如果我们不是想批量读取,而是其它批量操作,如批量转换为灰度图,那又该怎么做呢?

那就需要先定义一个函数,然后将这个函数作为第二个参数,如:

from skimage import data_dir,io,color

def convert_gray(f):
rgb=io.imread(f)
return color.rgb2gray(rgb) str=data_dir+'/*.png'
coll = io.ImageCollection(str,load_func=convert_gray)
io.imshow(coll[10])

这种批量操作对视频处理是极其有用的,因为视频就是一系列的图片组合

from skimage import data_dir,io,color

class AVILoader:
video_file = 'myvideo.avi' def __call__(self, frame):
return video_read(self.video_file, frame) avi_load = AVILoader() frames = range(0, 1000, 10) # 0, 10, 20, ...
ic =io.ImageCollection(frames, load_func=avi_load)

这段代码的意思,就是将myvideo.avi这个视频中每隔10帧的图片读取出来,放在图片集合中。

得到图片集合以后,我们还可以将这些图片连接起来,构成一个维度更高的数组,连接图片的函数为:

skimage.io.concatenate_images(ic)

带一个参数,就是以上的图片集合,如:

from skimage import data_dir,io,color

coll = io.ImageCollection('d:/pic/*.jpg')
mat=io.concatenate_images(coll)

使用concatenate_images(ic)函数的前提是读取的这些图片尺寸必须一致,否则会出错。我们看看图片连接前后的维度变化:

from skimage import data_dir,io,color

coll = io.ImageCollection('d:/pic/*.jpg')
print(len(coll)) #连接的图片数量
print(coll[0].shape) #连接前的图片尺寸,所有的都一样
mat=io.concatenate_images(coll)
print(mat.shape) #连接后的数组尺寸

显示结果:

2
(870, 580, 3)
(2, 870, 580, 3)

可以看到,将2个3维数组,连接成了一个4维数组

如果我们对图片进行批量操作后,想把操作后的结果保存起来,也是可以办到的。

例:把系统自带的所有png示例图片,全部转换成256*256的jpg格式灰度图,保存在d:/data/文件夹下

改变图片的大小,我们可以使用tranform模块的resize()函数,后续会讲到这个模块。

from skimage import data_dir,io,transform,color
import numpy as np def convert_gray(f):
rgb=io.imread(f) #依次读取rgb图片
gray=color.rgb2gray(rgb) #将rgb图片转换成灰度图
dst=transform.resize(gray,(256,256)) #将灰度图片大小转换为256*256
return dst str=data_dir+'/*.png'
coll = io.ImageCollection(str,load_func=convert_gray)
for i in range(len(coll)):
io.imsave('d:/data/'+np.str(i)+'.jpg',coll[i]) #循环保存图片

结果:

python数字图像处理(6):图像的批量处理的更多相关文章

  1. python数字图像处理(17):边缘与轮廓

    在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...

  2. 「转」python数字图像处理(18):高级形态学处理

    python数字图像处理(18):高级形态学处理   形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...

  3. Win8 Metro(C#) 数字图像处理--1 图像打开,保存

    原文:Win8 Metro(C#) 数字图像处理--1 图像打开,保存 作为本专栏的第一篇,必不可少的需要介绍一下图像的打开与保存,一便大家后面DEMO的制作.   Win8Metro编程中,图像相关 ...

  4. python数字图像处理(1):环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  5. 初始----python数字图像处理--:环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  6. Win8 Metro(C#)数字图像处理--4图像颜色空间描述

    原文:Win8 Metro(C#)数字图像处理--4图像颜色空间描述  图像颜色空间是图像颜色集合的数学表示,本小节将针对几种常见颜色空间做个简单介绍. /// <summary> / ...

  7. python数字图像处理(5):图像的绘制

    实际上前面我们就已经用到了图像的绘制,如: io.imshow(img) 这一行代码的实质是利用matplotlib包对图片进行绘制,绘制成功后,返回一个matplotlib类型的数据.因此,我们也可 ...

  8. python数字图像处理(五) 图像的退化和复原

    import cv2 import numpy as np import matplotlib.pyplot as plt import scipy import scipy.stats %matpl ...

  9. python数字图像处理(11):图像自动阈值分割

    图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素 ...

随机推荐

  1. iOS背景模糊效果3中方法总结

    1.首先得把界面转化成图片,给uiview加一个类目如下: #import "UIView+Screen.h" @implementation UIView (Screen) // ...

  2. iOS开发笔记15:地图坐标转换那些事、block引用循环/weak–strong dance、UICollectionviewLayout及瀑布流、图层混合

    1.地图坐标转换那些事 (1)投影坐标系与地理坐标系 地理坐标系使用三维球面来定义地球上的位置,单位即经纬度.但经纬度无法精确测量距离戒面积,也难以在平面地图戒计算机屏幕上显示数据.通过投影的方式可以 ...

  3. 快速与MySQL交互,使用XMAPP打开MySQL数据库,并用shell进行与MySQL交互<Window 10>

    1.如果想要通过XAMPP shell登录MySQL,还需要下载安装好XAMPP. 2.双击打开xampp-control.exe,会出现以下界面,点击开启Apache和MySQL,这样我们就开启服务 ...

  4. Android中ListView 控件与 Adapter 适配器如何使用?

    一个android应用的成功与否,其界面设计至关重要.为了更好的进行android ui设计,我们常常需要借助一些控件和适配器.今天小编在android培训网站上搜罗了一些有关ListView 控件与 ...

  5. JDK中的并发bug?

    最近研究Java并发,无意中在JDK8的System.console()方法的源码中翻到了下面的一段代码: private static volatile Console cons = null; / ...

  6. ehcache入门

    一.简介 ehcache是一个开源的,纯java进程内的缓存框架.它具有快速,简单,具有多种缓存策略等特点. Hibernate中默认就是用了ehcache.在我们的应用中使用ehcache可以快速地 ...

  7. 初识50个Linux命令

    1. [命令]:cat [功能说明]: concatenate files and print on the standard output #连接文件并打印到标准输出,有标准输出的都可以用重定向定向 ...

  8. ubuntu16.04下opencv安装笔记和例程

    问题: 最近重装了系统,需要重新配置opencv2.4.13,配置完成后每次都出现cmake error,google了报错,尝试了各种方法,都未解决问题,于是重新git clone 了opencv2 ...

  9. C/C++ 动态存储分配

    C语言的动态分配函数: malloc(m):开辟m字节长度的地址空间,并返回这段空间的首地址 sizeof(x):计算变量x的长度 free(p):释放指针p所指变量的存储空间,即彻底删除一个变量 C ...

  10. nopcommerce3.3简洁版

    从nopcommerce里面分离出了基础框架,包括了用户.新闻.单页面.投票等模块,可以作为快速开发asp.net mvc项目的方案,有兴趣的朋友可以下载看看,由于时间仓促可能会有一些多余的文件没有清 ...