python数字图像处理(6):图像的批量处理
有些时候,我们不仅要对一张图片进行处理,可能还会对一批图片处理。这时候,我们可以通过循环来执行处理,也可以调用程序自带的图片集合来处理。
图片集合函数为:
skimage.io.ImageCollection(load_pattern,load_func=None)
这个函数是放在io模块内的,带两个参数,第一个参数load_pattern, 表示图片组的路径,可以是一个str字符串。第二个参数load_func是一个回调函数,我们对图片进行批量处理就可以通过这个回调函数实现。回调函数默认为imread(),即默认这个函数是批量读取图片。
先看一个例子:
import skimage.io as io
from skimage import data_dir
str=data_dir + '/*.png'
coll = io.ImageCollection(str)
print(len(coll))
显示结果为25, 说明系统自带了25张png的示例图片,这些图片都读取了出来,放在图片集合coll里。如果我们想显示其中一张图片,则可以在后加上一行代码:
io.imshow(coll[10])
显示为:

如果一个文件夹里,我们既存放了一些jpg格式的图片,又存放了一些png格式的图片,现在想把它们全部读取出来,该怎么做呢?
import skimage.io as io
from skimage import data_dir
str='d:/pic/*.jpg:d:/pic/*.png'
coll = io.ImageCollection(str)
print(len(coll))
注意这个地方'd:/pic/*.jpg:d:/pic/*.png' ,是两个字符串合在一起的,第一个是'd:/pic/*.jpg', 第二个是'd:/pic/*.png' ,合在一起后,中间用冒号来隔开,这样就可以把d:/pic/文件夹下的jpg和png格式的图片都读取出来。如果还想读取存放在其它地方的图片,也可以一并加进去,只是中间同样用冒号来隔开。
io.ImageCollection()这个函数省略第二个参数,就是批量读取。如果我们不是想批量读取,而是其它批量操作,如批量转换为灰度图,那又该怎么做呢?
那就需要先定义一个函数,然后将这个函数作为第二个参数,如:
from skimage import data_dir,io,color def convert_gray(f):
rgb=io.imread(f)
return color.rgb2gray(rgb) str=data_dir+'/*.png'
coll = io.ImageCollection(str,load_func=convert_gray)
io.imshow(coll[10])

这种批量操作对视频处理是极其有用的,因为视频就是一系列的图片组合
from skimage import data_dir,io,color class AVILoader:
video_file = 'myvideo.avi' def __call__(self, frame):
return video_read(self.video_file, frame) avi_load = AVILoader() frames = range(0, 1000, 10) # 0, 10, 20, ...
ic =io.ImageCollection(frames, load_func=avi_load)
这段代码的意思,就是将myvideo.avi这个视频中每隔10帧的图片读取出来,放在图片集合中。
得到图片集合以后,我们还可以将这些图片连接起来,构成一个维度更高的数组,连接图片的函数为:
skimage.io.concatenate_images(ic)
带一个参数,就是以上的图片集合,如:
from skimage import data_dir,io,color
coll = io.ImageCollection('d:/pic/*.jpg')
mat=io.concatenate_images(coll)
使用concatenate_images(ic)函数的前提是读取的这些图片尺寸必须一致,否则会出错。我们看看图片连接前后的维度变化:
from skimage import data_dir,io,color
coll = io.ImageCollection('d:/pic/*.jpg')
print(len(coll)) #连接的图片数量
print(coll[0].shape) #连接前的图片尺寸,所有的都一样
mat=io.concatenate_images(coll)
print(mat.shape) #连接后的数组尺寸
显示结果:
2
(870, 580, 3)
(2, 870, 580, 3)
可以看到,将2个3维数组,连接成了一个4维数组
如果我们对图片进行批量操作后,想把操作后的结果保存起来,也是可以办到的。
例:把系统自带的所有png示例图片,全部转换成256*256的jpg格式灰度图,保存在d:/data/文件夹下
改变图片的大小,我们可以使用tranform模块的resize()函数,后续会讲到这个模块。
from skimage import data_dir,io,transform,color
import numpy as np def convert_gray(f):
rgb=io.imread(f) #依次读取rgb图片
gray=color.rgb2gray(rgb) #将rgb图片转换成灰度图
dst=transform.resize(gray,(256,256)) #将灰度图片大小转换为256*256
return dst str=data_dir+'/*.png'
coll = io.ImageCollection(str,load_func=convert_gray)
for i in range(len(coll)):
io.imsave('d:/data/'+np.str(i)+'.jpg',coll[i]) #循环保存图片
结果:

python数字图像处理(6):图像的批量处理的更多相关文章
- python数字图像处理(17):边缘与轮廓
在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...
- 「转」python数字图像处理(18):高级形态学处理
python数字图像处理(18):高级形态学处理 形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...
- Win8 Metro(C#) 数字图像处理--1 图像打开,保存
原文:Win8 Metro(C#) 数字图像处理--1 图像打开,保存 作为本专栏的第一篇,必不可少的需要介绍一下图像的打开与保存,一便大家后面DEMO的制作. Win8Metro编程中,图像相关 ...
- python数字图像处理(1):环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- 初始----python数字图像处理--:环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- Win8 Metro(C#)数字图像处理--4图像颜色空间描述
原文:Win8 Metro(C#)数字图像处理--4图像颜色空间描述 图像颜色空间是图像颜色集合的数学表示,本小节将针对几种常见颜色空间做个简单介绍. /// <summary> / ...
- python数字图像处理(5):图像的绘制
实际上前面我们就已经用到了图像的绘制,如: io.imshow(img) 这一行代码的实质是利用matplotlib包对图片进行绘制,绘制成功后,返回一个matplotlib类型的数据.因此,我们也可 ...
- python数字图像处理(五) 图像的退化和复原
import cv2 import numpy as np import matplotlib.pyplot as plt import scipy import scipy.stats %matpl ...
- python数字图像处理(11):图像自动阈值分割
图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素 ...
随机推荐
- Android bitmap高效显示和优化
第一部分:Bitmap高效显示 应用场景:有时候我们想在界面上显示一个网络图片或者显示一张本地的图片,但是图片本身是很大的有几兆,但是显示的位置很小或者说我们可以用更小的图片来满足这样的需求,如果把整 ...
- 故障时自动重启Apache
最近不知道为什么博客总是莫名其妙地挂掉, 重启Apache就好了,我也懒得去研究到底是哪里出了问题. 只是每次都需要手工SSH上去重启Apache,有点麻烦. 而且有时候在夜里挂掉,一晚上博客就都不能 ...
- vs2012远程调试功能的改进
不知道大家有没有遇到过这种情况,刚开发完的程序,明明在本机能够好好的运行,可是部署到服务器过分发给用户时,总是出现莫名其妙的错误. 一时半会又看不出问题来,怎么办呢?难道只能在服务器或是客户电脑上装一 ...
- Effetive Java 22 Favor static member classes over nonstatic
Nested class types Usage and remark Advantage Disadvantage static member classes Use for public help ...
- oracle中的数值函数整理
主要分为三块介绍(单值函数.聚合函数.列表函数) 一.单值函数(比较简单,看一遍基本也就理解记住了) 1.基本加减乘车没有什么可说的,只需要注意一点,任何值与null一起运算 ,结果都为null,因为 ...
- 【nginx】负载均衡和proxy的配置
简介 使用upstream模块实现nginx负载均衡使用nginx_upstream_check_module模块实现后端服务器的健康检查使用nginx-sticky-module扩展模块实现Cook ...
- Cassandra 分布式集群
1 实施Cassandra集群,并验证集群功能正常,抓图实验过程 2 为什么说对于布隆过滤器有"确定某个元素是否在某个集合中的代价和总的元素数目无关"?误判率和元素数目有关吗?为什 ...
- 树形DP codevs 1814 最长链
codevs 1814 最长链 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 现给出一棵N个结点二叉树,问这棵二叉树中 ...
- activiti自定义流程之整合(三):整合自定义表单创建模型
本来在创建了表单之后应该是表单列表和预览功能,但是我看了看整合的代码,和之前没有用angularjs的基本没有什么变化,一些极小的变动也只是基于angularjs的语法,因此完全可以参考之前说些的表单 ...
- Eclipse中的快捷键总结
Eclipse中10个最有用的快捷键组合 一个Eclipse骨灰级开发者总结了他认为最有用但又不太为人所知的快捷键组合.通过这些组合可以更加容易的浏览源代码,使得整体的开发效率和质量得到提升. ...