TF Boys (TensorFlow Boys ) 养成记(四)
前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络。
首先准备数据:
cifar10 的数据集共有 6 万幅 32 * 32 大小的图片,分为 10 类,每类 6000 张,其中 5 万张用于训练, 1 万张用于测试。数据集被分成了5 个训练的 batches 和 1 个测试的 batch。每个 batch 里的图片都是随机排列的。官网上提供了三个版本的下载链接,分别是 Python 版本的,Matlab 版本的和二进制文件版本的。其中,Python 版本的数据格式,官网上给了读取数据的代码,Matlab 版本的数据和 Python 版本的数据格式差不多。二进制版本的数据,有 5 个训练用的 batches,data_batch_1.bin ~ data_batch_5.bin 和一个测试用的 test_batch.bin,每个 bin 文件的格式如下:
<1 x label><3072 x pixel>
...
<1 x label><3072 x pixel>
共有一万行,每行 3073 个字节,第一个字节表示标签信息,剩下的 3072 字节分为 RGB 三通道,每个通道 1024( = 32 * 32) 个字节,注意,行与行之间没有明显的区分标识符,所以整个 bin 文件字节长度恰好是 3073 万。
考虑到 TensorFlow 可以读取固定长度格式的数据(用 tf.FixedLengthRecordReader ),我们下载二进制格式的数据。新建文件夹/home/your_name/TensorFlow/cifar10/data,从cifar10 官网上下载二进制格式的文件压缩包,解压到此文件夹,得到 cifar-10- batches-bin 文件夹,里面有 8 个文件,6 个 .bin文件,一个 readme, 一个 .txt 说明了类别。
然后我们来考虑如下的网络结构进行 cifar10 的分类:每次输入一个batch的 64 幅图像, 转化成 64*32*32*3 的四维张量,经过步长为 1,卷积核大小为 5*5 ,Feature maps 为64的卷积操作,变为 64*32*32*64 的四维张量,然后经过一个步长为 2 的 max_pool 的池化层,变成 64*16*16*64 大小的四维张量,再经过一次类似的卷积池化操作,变为 64*8*8*64 大小的4维张量,再经过两个全连接层,映射到 64*192 的二维张量,然后经过一个 sortmax 层,变为 64*10 的张量,最后和标签 label 做一个交叉熵的损失函数。如下图所示:

参考文献:
1. https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10
TF Boys (TensorFlow Boys ) 养成记(四)的更多相关文章
- TF Boys (TensorFlow Boys ) 养成记(五): CIFAR10 Model 和 TensorFlow 的四种交叉熵介绍
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...
- TF Boys (TensorFlow Boys ) 养成记(四):TensorFlow 简易 CIFAR10 分类网络
前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 ...
- TF Boys (TensorFlow Boys ) 养成记(一)
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...
- TF Boys (TensorFlow Boys ) 养成记(一):TensorFlow 基本操作
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...
- TF Boys (TensorFlow Boys ) 养成记(五)
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...
- TF Boys (TensorFlow Boys ) 养成记(六)
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train ...
- TF Boys (TensorFlow Boys ) 养成记(三)
上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生 ...
- TF Boys (TensorFlow Boys ) 养成记(二)
TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...
- TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取
TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...
随机推荐
- (引用 )自动化测试报告HTMLtestrunner
1>下载HTMLTestRunner.py文件,地址为: http://tungwaiyip.info/software/HTMLTestRunner.html Windows平台: 将下载 ...
- 深入理解JVM内存模型
1.程序计数器在虚拟机的概念模型里字节码解释器工作时就是通过改变 这个计数器的值来选取下一条需要执行的字节码指令,分支.循环.跳转.异常处理. Java 虚拟机的多线程是通过线程轮流切换并分配处理器执 ...
- PAC自动代理文件格式,教你如何写PAC文件
PAC文件格式 PAC文件是纯文本格式的,实际上就是JavaScript文件.Chrome/Chromium的扩展Switchy!的"Auto Switch Mode"功能实际上也 ...
- python profile
一.profile,cProfile 1. python -m cProfile myprogram.py python -m profile myprog.py2. 使用import profile ...
- Entity Framework 6.0 源码解读笔记(一)
internal static TResult ExecuteSingle<TResult>(IEnumerable<TResult> query, Expression qu ...
- 利用fiddler模拟发送json数据的post请求
fiddler是调试利器,有许多好用的功能,这里简单的介绍一下利用fiddler模拟发送post请求的例子 先简单介绍一下失败的例子,最后给出正确的方法
- Windows服务的手动添加和删除方法
Windows服务的手动添加和删除方法 服务,是指执行指定系统功能的程序.例程或进程,以便支持其他程序,尤其是低层(接近硬件)程序.其实,服务就是一种特殊的应用程序,它从服务启动开始就一直处于运行状态 ...
- Oracle 建表,递增序列,触发器,分析函数row_number() ,partition by 子句。
create table SC ( Id INTEGER, Name nvarchar2(20) , KC_Name nvarchar2(20), KC_score INTEGER , constra ...
- 韩服MU
※◆☆★☆◆※欢迎使用!!!如有问题或新功能需求请联系作者QQ:82850696*4*您使用的测试版已到期,如需继续使用,请联系作者 QQ : 82850696*0*2015-1-7 23:59:59 ...
- Hibernate之创建命名策略
在开发软件时,通常会要求每个开发人员遵守共同的命名策略.例如,数据库的表名及字段名的所有字符都要大写,表名以“S”结尾.对于Customer类,对应的数据库表名为CUSTOMERS.为了在映射文件中遵 ...