Effective Python2 读书笔记2
Item 14: Prefer Exceptions to Returning None
Functions that returns None to indicate special meaning are error prone because None and other values (e.g., zero, the empty string) all evaluate to False in conditional expressions.
Raise exceptions to indicate special situations instead of returning None. Expect the calling code to handle exceptions properly when they're documented.
Item 15: Know How Closures Interact with Variable Scope
# found never change
def sort_priority(numbers, group):
found = False
def helper(x):
if x in group:
found = True
return (0, x)
return (1, x)
numbers.sort(key=helper)
return found # use a mutable value, for example list
def sort_priority(numbers, group):
found = [False]
def helper(x):
if x in group:
found[0] = True
return (0, x)
return (1, x)
numbers.sort(key=helper)
return found
Closure functions can refer to variables from any of the scopes in which they were defined.
By default, closures can't affect enclosing scopes by assigning variables.
In Python 2, use a mutable value (like a single-item list) to work around the lack of the nonlocal statement.
Avoid using nonlocal statements for anything beyond simple functions.
Item 16: Consider Generators Instead of Returning Lists
Using iterator can be clearer than the alternative of returning lists of accumulated results.
The iterator returned by a generator produces the set of values passed to yield expressions within the generator function's body.
Generators can produce a sequence of outputs for arbitrarily large inputs because their working memory doesn't include all inputs and outputs.
Item 17: Be Defensive When Iterating Over Arguments
The iterator protocol is how Python for loops and related expressions traverse the contents of a container type. When Python sees a statement like for x in foo it will actually call iter(foo). The iter built-in function calls the foo.__iter__ special method in turn. The __iter__ method must return an iterator object (which itself implements the __next__ special method). Then the for loop repeatedly calls the next built-in function on the iterator object until it's exhausted (and raises a StopIteration exception).
Practically speaking you can achieve all of this behavior for your classes by implementing the __iter__ method as a generator.
The protocol states that when an iterator is passed to the iter built-in function, iter will return the iterator itself. In contrast, when a container type is passed to iter, a new iterator object will be returned each time.
>>> class MyContainer(object):
... def __iter__(self):
... return (_ for _ in xrange(5))
...
>>> gen = MyContainer() # a new iterator object will be returned each time
>>> [_ for _ in gen]
[0, 1, 2, 3, 4]
>>> [_ for _ in gen]
[0, 1, 2, 3, 4]
>>> [_ for _ in gen]
[0, 1, 2, 3, 4] >>> iterator = (_ for _ in xrange(5)) # return the iterator itself
>>> [_ for _ in iterator]
[0, 1, 2, 3, 4]
>>> [_ for _ in iterator]
[]
>>> [_ for _ in iterator]
[]
Thus, you can test an input value for this behavior and raise a TypeError to reject iterators. It will work for any type of container that follows the iterator protocol.
def normalize_defensive(numbers):
if iter(numbers) is iter(numbers): # An iterator - bad!
raise TypeError('Must supply a container')
# sum will call ReadVisits.__iter__ to allocate a new iterator object
total = sum(numbers)
result = []
# for loop will also call __iter__ to allocate a second iterator object
for value in numbers:
percent = 100 * value / total
result.append(percent)
return result
>>> lst = [1,2,3]
>>> iter(lst) == iter(lst)
False >>> gen = (_ for _ in xrange(4))
>>> iter(gen) == iter(gen)
True
Item 18: Reduce Visual Noise with Variable Positional Arguments
>>> lst
[1, 2, 3] # join!
>>> ','.join(str(x) for x in lst)
'1,2,3'
>>> ','.join([str(x) for x in lst])
'1,2,3'
>>> ','.join((str(x) for x in lst))
'1,2,3'
Functions can accept a variable number of positional arguments by using *args in the def statement.
You can use the items from a sequence as the positional arguments for a function with the * operator.
Using the * operator with a generator may cause your program to run out of memory and crash.
Adding new positional parameters to functions that accept *args can introduce hard-to-find bugs.
Item 19: Provide Optional Behavior with Keyword Arguments
Function arguments can be specified by position or by keyword.
Keywords make it clear what the purpose of each argument is when it would be confusing with only positional arguments.
Keyword arguments with default values make it easy to add new behaviors to a function, especially when the function has existing callers.
Optional keyword arguments should always be passed by keyword instead of by position.
Item 20: Use None and Docstrings to Specify Dynamic Default Arguments
Default arguments are only evaluated once: during function definition at module load time. This can cause odd behaviors for dynamic values (like {} or []).
Use None as the default value for keyword arguments that have a dynamic value. Document the actual default behavior in the function's docstring.
Item 21: Enforce Clarity with Keyword-Only Arguments
def safe_division_d(number, divisor, **kwargs):
ignore_overflow = kwargs.pop('ignore_overflow', False)
ignore_zero_div = kwargs.pop('ignore_zero_division', False)
if kwargs:
raise TypeError("Unexcepted **kwrags: %r" % kwargs)
# ... # raise Exception
safe_division_d(1, 0, False, True) >>>
TypeError: safe_division_d() takes 2 positional arguments but 4 were given # it works
safe_division_d(1, 0, ignore_zero_division=True)
Keyword arguments make the intention of a function call more clear.
Use Keyword-only arguments to force callers to supply keyword arguments for potentially confusing functions, especially those that accept mutiple Boolean flags.
Python 2 can emulate keyword-only arguments for functions by using **kwargs and manually raising TypeError exceptions.
Effective Python2 读书笔记2的更多相关文章
- Effective Python2 读书笔记1
Item 2: Follow the PEP 8 Style Guide Naming Naming functions, variables, attributes lowercase_unders ...
- Effective Python2 读书笔记3
Item 22: Prefer Helper Classes Over Bookkeeping with Dictionaries and Tuples For example, say you wa ...
- Effective STL 读书笔记
Effective STL 读书笔记 标签(空格分隔): 未分类 慎重选择容器类型 标准STL序列容器: vector.string.deque和list(双向列表). 标准STL管理容器: set. ...
- Effective STL读书笔记
Effective STL 读书笔记 本篇文字用于总结在阅读<Effective STL>时的笔记心得,只记录书上描写的,但自己尚未熟练掌握的知识点,不记录通用.常识类的知识点. STL按 ...
- effective c++读书笔记(一)
很早之前就听过这本书,找工作之前读一读.看了几页,个人感觉实在是生涩难懂,非常不符合中国人的思维方式.之前也有博主做过笔记,我来补充一些自己的理解. 我看有人记了笔记,还不错:http://www.3 ...
- Effective Java读书笔记完结啦
Effective Java是一本经典的书, 很实用的Java进阶读物, 提供了各个方面的best practices. 最近终于做完了Effective Java的读书笔记, 发布出来与大家共享. ...
- Effective java读书笔记
2015年进步很小,看的书也不是很多,感觉自己都要废了,2016是沉淀的一年,在这一年中要不断学习.看书,努力提升自己 计在16年要看12本书,主要涉及java基础.Spring研究.java并发.J ...
- Effective Objective-C 读书笔记
一本不错的书,给出了52条建议来优化程序的性能,对初学者有不错的指导作用,但是对高级阶段的程序员可能帮助不是很大.这里贴出部分笔记: 第2条: 使用#improt导入头文件会把头文件的内容全部暴露到目 ...
- 【Effective C++读书笔记】序
C++ 是一个难学易用的语言! [C++为什么难学?] C++的难学,不仅在其广博的语法,以及语法背后的语义,以及语义背后的深层思维,以及深层思维背后的对象模型: C++的难学还在于它提供了四种不同而 ...
随机推荐
- 关于java中final关键字与线程安全性
在Java5中,final关键字是非常重要而事实上却经常被忽视其作为同步的作用.本质上讲,final能够做出如下保证:当你创建一个对象时,使用final关键字能够使得另一个线程不会访问到处于" ...
- Using Internal EEPROM of PIC Microcontroller
There are commonly three types of memories in a PIC Microcontroller, Flash Program Memory, Data Memo ...
- 年底发福利了——分享一下我的.NET软件开发资源
最近建了一个.NET软件开发资源的360网盘共享群,把收集的一些.NET软件开发资源分享给大家,也欢迎大家把好的东东分享一下. 资源主要有:开发工具.控件资源.书籍教程.网页设计.源码资源几大类,也希 ...
- Ubuntu 16.04 LTS设置国内更新源
ubuntu一般多用于开发环境,centos/redhat多用于企业环境.suse多用于银行金融行业!!! 01.ubuntu源地址 /etc/apt/sources.list 02.更新缓存资源索引 ...
- 【JavaScript】javascript 方法 test()
个人理解:var b = x.test(y); y是否存在模式x中,返回true或false:x可以是正则,字符串,
- ajax 多个表单值问题,表单序列化加其它表单值
$.ajax({ type: "post", url: "{:u('cart/totalByCard')}?t="+Math.random(9999), dat ...
- 自己积累的一些Emgu CV代码(主要有图片格式转换,图片裁剪,图片翻转,图片旋转和图片平移等功能)
using System; using System.Drawing; using Emgu.CV; using Emgu.CV.CvEnum; using Emgu.CV.Structure; na ...
- Java研发方向如何准备BAT技术面试答案(上)
http://blog.csdn.net/q979392157/article/details/52164319 阿里面试题总结 http://blog.csdn.net/q979392157/art ...
- 分布式数据库Hbase
HBase – Hadoop Database,是一个高可靠性.高性能.面向列.可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群. HBase是Goog ...
- python面向对象初级(七)
概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 面向过程编程最易被初学 ...