David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

题意:n个村庄,每个村庄给你x、y、z坐标,表示他的三维位置,两个村庄之间距离为不算z轴欧几里得距离、建一条路的花费
为两个村庄z坐标差值,构建一条路网络,使的每个点都被连接(生成树),且让其花费/距离最小(01分数规划) 思路:二分比例,然后用最小(最大)生成树,比较是否符合情况。
例如:花费/距离<=mid == 花费-mid*距离 <= 0, 使用最小生成树(边权:花费-mid*距离),看看是否和小于零(满足) 注:我用前向星不知道为什么超时了,看网上题解改的邻接矩阵,知道的大佬orz请通知一声
 #include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
#define inf 1e18;
using namespace std; int n;
int x[],y[],z[];
const double eps = 1e-; bool vis[];
double maps[][];
double cost[][]; double dis(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
} double dist[]; bool prim(double mid)
{
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++)dist[i]=inf;
dist[]=;
for(int i=;i<n;i++)
{
int minn = inf;
int id = -;
for(int j=;j<=n;j++)
{
if(!vis[j] && (id == - || dist[j] < dist[id]))id=j;
}
if(id == -)break;
vis[id]=; for(int j=;j<=n;j++)
{
if(!vis[j])dist[j] = min(dist[j],cost[id][j]-mid*maps[id][j]);
}
}
double ans = ;
for(int i=;i<=n;i++)ans += dist[i];
if(ans <= )return ;
return ;
}
int main()
{
while(~scanf("%d",&n)&&n)
{
memset(maps,,sizeof(maps));
for(int i=;i<=n;i++)
{
scanf("%d%d%d",&x[i],&y[i],&z[i]);
}
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
{
maps[i][j] = maps[j][i] = dis(i,j);
cost[i][j] = cost[j][i] = abs(z[i]-z[j]);
}
}
double l=,r=;
while(r - l >= eps)
{
double mid =(r-l)/+l;
if(prim(mid))r = mid;
else l = mid;
}
printf("%.3f\n",(l+r)/);
}
}

前向星超时代码:

 #include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
#define inf 1e18;
using namespace std; int n;
int x[],y[],z[];
const double eps = 1e-;
struct Node
{
int y,next;
double val,c;
}node[];
int cnt,head[];
bool vis[]; void add(int x,int y,double val,double c)
{
node[++cnt].y=y;
node[cnt].val=val;
node[cnt].c=c;
node[cnt].next=head[x];
head[x]=cnt;
} double dis(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
} double dist[]; bool prim(double mid)
{
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++)dist[i]=inf;
dist[]=;
for(int i=;i<n;i++)
{
int minn = inf;
int id = -;
for(int j=;j<=n;j++)
{
if(!vis[j] && (id == - || dist[j] < dist[id]))id=j;
}
if(id == -)break;
vis[id]=;
for(int j=head[id];j;j=node[j].next)
{
int to = node[j].y;
if(!vis[to])dist[to] = min(dist[to],node[j].c-mid*node[j].val);
}
}
double ans = ;
for(int i=;i<=n;i++)ans += dist[i];
if(ans <= )return ;
return ;
}
int main()
{
while(~scanf("%d",&n)&&n)
{
cnt = ;
//printf("================================\n");
memset(head ,,sizeof(head));
for(int i=;i<=n;i++)
{
scanf("%d%d%d",&x[i],&y[i],&z[i]);
}
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
{
double td = dis(i,j);
double tz = abs(z[i]-z[j]);
add(i,j,td,tz);
add(j,i,td,tz);
}
}
double l=,r=;
while(r - l >= eps)
{
double mid =(r-l)/+l;
if(prim(mid))r = mid;
else l = mid;
}
printf("%.3f\n",(l+r)/);
}
}

Desert King POJ - 2728(最优比率生产树/(二分+生成树))的更多相关文章

  1. Desert King (poj 2728 最优比率生成树 0-1分数规划)

    Language: Default Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22113   A ...

  2. [POJ2728] Desert King 解题报告(最优比率生成树)

    题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...

  3. poj 2728 最优比率生成树

    思路:设sum(cost[i])/sum(dis[i])=r;那么要使r最小,也就是minsum(cost[i]-r*dis[i]);那么就以cost[i]-r*dis[i]为边权重新建边.当求和使得 ...

  4. poj 3621(最优比率环)

    题目链接:http://poj.org/problem?id=3621 思路:之前做过最小比率生成树,也是属于0/1整数划分问题,这次碰到这道最优比率环,很是熟悉,可惜精度没控制好,要不就是wa,要不 ...

  5. POJ 3621-Sightseeing Cows-最优比率环|SPFA+二分

    最优比率环问题.二分答案,对于每一个mid,把节点的happy值归类到边上. 对于每条边,用mid×weight减去happy值,如果不存在负环,说明还可以更大. /*---------------- ...

  6. poj 3621(最优比率环)

    Sightseeing Cows Farmer John has decided to reward his cows for their hard work by taking them on a ...

  7. POJ 3621 最优比率生成环

    题意:      让你求出一个最优比率生成环. 思路:      又是一个01分化基础题目,直接在jude的时候找出一个sigma(d[i] * x[i])大于等于0的环就行了,我是用SPFA跑最长路 ...

  8. poj 2728 最优比例生成树(01分数规划)模板

    /* 迭代法 :204Ms */ #include<stdio.h> #include<string.h> #include<math.h> #define N 1 ...

  9. POJ 2728 JZYZOJ 1636 分数规划 最小生成树 二分 prim

    http://172.20.6.3/Problem_Show.asp?id=1636 复习了prim,分数规划大概就是把一个求最小值或最大值的分式移项变成一个可二分求解的式子. #include< ...

随机推荐

  1. Apache Hadoop 2.9.2 完全分布式部署

    Apache Hadoop 2.9.2 完全分布式部署(HDFS) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.环境准备 1>.操作平台 [root@node101.y ...

  2. linux内核开发入门学习

    1. 目录结构 内核源代码下载 https://www.kernel.org arch目录 arch是architecture的缩写. 内核所支持的每种CPU体系,在该目录下都有对应的子目录.每个CP ...

  3. 安装pandas报错(AttributeError: 'module' object has no attribute 'main')

    在pycharm中安装pandas出现报错:AttributeError: 'module' object has no attribute 'main', 刚开始以为是pip的版本太旧了,于是乎将其 ...

  4. Debian 命令行方式配置网络

    一.对于有线网络,如果默认没有安装图形界面,进入了 multi-user.target中时,是没有使用NetworkManager管理网络的,此时需要手动配置才能上网 首先得到网卡名称:ip addr ...

  5. Tableau 之一 连接数据源

    导入数据源 与各类数据源建立连接关系,是使用tableau探索分析数据的第一步,本节内容包括: 数据源类型 连接数据源 数据源类型 打开tableau,可以在左侧窗口看到连接选项,目前tableau可 ...

  6. 利用android studio 生成 JNI需要的动态库so文件

    JNI:  Java Native Interface,  提供了java语言和其他语言(例如c和c++)进行相互调用的方式. 本文是用java调用c生成的so模式.其中,编译so文件过程如下: 1) ...

  7. C# 断言 Assert

    重构-断言 现象:某一段代码需要对程序状态做出某种假设 做法:以断言明确表现这种假设 动机: 常常有这种一段代码:只有某个条件为真是,该改名才能正常运行. 通常假设这样的假设并没有代码中明确表现出来, ...

  8. Python 爬虫-进阶开发之路

    第一篇:爬虫基本原理: HTTP, 爬虫基础 第二篇:环境安装与搭建: 第三篇:网页抓取:urllib,requests,aiohttp , selenium,  appium 第四篇:网页解析:re ...

  9. Lua模式匹配

    Lua并不使用POSIX规范的正则表达式[4](也写作regexp)来进行模式匹配.主要的原因出于程序大小方面的考虑:实现一个典型的符合POSIX标准的regexp大概需要4000行代码,这比整个Lu ...

  10. 初学python之路-day13

    一.函数的嵌套定义 # 概念:在一个函数的内部定义另一个函数 # 为什么要有函数的嵌套定义: # 1)函数fn2想直接使用fn1函数的局部变量,可以讲fn2直接定义到fn1的内部,这样fn2就可以直接 ...