David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

题意:n个村庄,每个村庄给你x、y、z坐标,表示他的三维位置,两个村庄之间距离为不算z轴欧几里得距离、建一条路的花费
为两个村庄z坐标差值,构建一条路网络,使的每个点都被连接(生成树),且让其花费/距离最小(01分数规划) 思路:二分比例,然后用最小(最大)生成树,比较是否符合情况。
例如:花费/距离<=mid == 花费-mid*距离 <= 0, 使用最小生成树(边权:花费-mid*距离),看看是否和小于零(满足) 注:我用前向星不知道为什么超时了,看网上题解改的邻接矩阵,知道的大佬orz请通知一声
 #include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
#define inf 1e18;
using namespace std; int n;
int x[],y[],z[];
const double eps = 1e-; bool vis[];
double maps[][];
double cost[][]; double dis(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
} double dist[]; bool prim(double mid)
{
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++)dist[i]=inf;
dist[]=;
for(int i=;i<n;i++)
{
int minn = inf;
int id = -;
for(int j=;j<=n;j++)
{
if(!vis[j] && (id == - || dist[j] < dist[id]))id=j;
}
if(id == -)break;
vis[id]=; for(int j=;j<=n;j++)
{
if(!vis[j])dist[j] = min(dist[j],cost[id][j]-mid*maps[id][j]);
}
}
double ans = ;
for(int i=;i<=n;i++)ans += dist[i];
if(ans <= )return ;
return ;
}
int main()
{
while(~scanf("%d",&n)&&n)
{
memset(maps,,sizeof(maps));
for(int i=;i<=n;i++)
{
scanf("%d%d%d",&x[i],&y[i],&z[i]);
}
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
{
maps[i][j] = maps[j][i] = dis(i,j);
cost[i][j] = cost[j][i] = abs(z[i]-z[j]);
}
}
double l=,r=;
while(r - l >= eps)
{
double mid =(r-l)/+l;
if(prim(mid))r = mid;
else l = mid;
}
printf("%.3f\n",(l+r)/);
}
}

前向星超时代码:

 #include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
#define inf 1e18;
using namespace std; int n;
int x[],y[],z[];
const double eps = 1e-;
struct Node
{
int y,next;
double val,c;
}node[];
int cnt,head[];
bool vis[]; void add(int x,int y,double val,double c)
{
node[++cnt].y=y;
node[cnt].val=val;
node[cnt].c=c;
node[cnt].next=head[x];
head[x]=cnt;
} double dis(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
} double dist[]; bool prim(double mid)
{
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++)dist[i]=inf;
dist[]=;
for(int i=;i<n;i++)
{
int minn = inf;
int id = -;
for(int j=;j<=n;j++)
{
if(!vis[j] && (id == - || dist[j] < dist[id]))id=j;
}
if(id == -)break;
vis[id]=;
for(int j=head[id];j;j=node[j].next)
{
int to = node[j].y;
if(!vis[to])dist[to] = min(dist[to],node[j].c-mid*node[j].val);
}
}
double ans = ;
for(int i=;i<=n;i++)ans += dist[i];
if(ans <= )return ;
return ;
}
int main()
{
while(~scanf("%d",&n)&&n)
{
cnt = ;
//printf("================================\n");
memset(head ,,sizeof(head));
for(int i=;i<=n;i++)
{
scanf("%d%d%d",&x[i],&y[i],&z[i]);
}
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
{
double td = dis(i,j);
double tz = abs(z[i]-z[j]);
add(i,j,td,tz);
add(j,i,td,tz);
}
}
double l=,r=;
while(r - l >= eps)
{
double mid =(r-l)/+l;
if(prim(mid))r = mid;
else l = mid;
}
printf("%.3f\n",(l+r)/);
}
}

Desert King POJ - 2728(最优比率生产树/(二分+生成树))的更多相关文章

  1. Desert King (poj 2728 最优比率生成树 0-1分数规划)

    Language: Default Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22113   A ...

  2. [POJ2728] Desert King 解题报告(最优比率生成树)

    题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...

  3. poj 2728 最优比率生成树

    思路:设sum(cost[i])/sum(dis[i])=r;那么要使r最小,也就是minsum(cost[i]-r*dis[i]);那么就以cost[i]-r*dis[i]为边权重新建边.当求和使得 ...

  4. poj 3621(最优比率环)

    题目链接:http://poj.org/problem?id=3621 思路:之前做过最小比率生成树,也是属于0/1整数划分问题,这次碰到这道最优比率环,很是熟悉,可惜精度没控制好,要不就是wa,要不 ...

  5. POJ 3621-Sightseeing Cows-最优比率环|SPFA+二分

    最优比率环问题.二分答案,对于每一个mid,把节点的happy值归类到边上. 对于每条边,用mid×weight减去happy值,如果不存在负环,说明还可以更大. /*---------------- ...

  6. poj 3621(最优比率环)

    Sightseeing Cows Farmer John has decided to reward his cows for their hard work by taking them on a ...

  7. POJ 3621 最优比率生成环

    题意:      让你求出一个最优比率生成环. 思路:      又是一个01分化基础题目,直接在jude的时候找出一个sigma(d[i] * x[i])大于等于0的环就行了,我是用SPFA跑最长路 ...

  8. poj 2728 最优比例生成树(01分数规划)模板

    /* 迭代法 :204Ms */ #include<stdio.h> #include<string.h> #include<math.h> #define N 1 ...

  9. POJ 2728 JZYZOJ 1636 分数规划 最小生成树 二分 prim

    http://172.20.6.3/Problem_Show.asp?id=1636 复习了prim,分数规划大概就是把一个求最小值或最大值的分式移项变成一个可二分求解的式子. #include< ...

随机推荐

  1. Java使用AES算法进行加密解密

    一.加密 /** * 加密 * @param src 源数据字节数组 * @param key 密钥字节数组 * @return 加密后的字节数组 */ public static byte[] En ...

  2. .net aop 操作 切面应用 Castle.Windsor框架 spring 可根据接口 自动生成一个空的实现接口的类

    通过unget 安装Castle.Windsor using Castle.DynamicProxy; using System; using System.Collections.Generic; ...

  3. Python编程四大神兽:迭代器、生成器、闭包和装饰器

    生成器 生成器是生成一个值的特殊函数,它具有这样一个特点:第一次执行该函数时,先从头按顺序执行,在碰到yield关键字时该函数会暂停执行该函数后续的代码,并且返回一个值:在下一次调用该函数执行时,程序 ...

  4. C#解压文件,Excel操作

    /// <summary> /// 获取目录下文件路径 /// </summary> /// <param name="path"></p ...

  5. 在线制作微信跳转浏览器下载app/打开指定页面源码

    微信自动跳转外部浏览器下载app/打开指定页面源码 源码说明: 适用安卓和苹果系统,支持任何网页链接.并且无论链接是否已经被微信拦截,均可实现微信内自动跳转浏览器打开. 生成的跳转链接具有极佳的防拦截 ...

  6. Urban Elevations UVA - 221

    题目大意:给出建筑的俯视图,以及每个建筑的左下角坐标,宽度,长度,高度.求正视图可观察到的建筑的编号 思路:建筑物的可见性等于南墙的可见性,依据左下角排序后,逐个判断每个建筑是否可见.对南墙的x坐标进 ...

  7. CoordinatorLayout 嵌套 AppBarLayout RecyclerView ,通过代码控制,使得CoordinatorLayout 自动滑动到tab置顶的位置

    有两个方式可以实现 一:调用AppBarLayout,设置间距 val behavior = (appbar_layout.getLayoutParams() as CoordinatorLayout ...

  8. SQL优化传送门

    转载:pursuer.chen的SQL Server 容易忽略的错误 链接:https://www.cnblogs.com/chenmh/p/3999475.html

  9. j2ee之监听页面请求

    本博客的起因是我想监听浏览器端每个页面都访问了哪些资源~~: 我是个菜鸡,所以我要记在我的小本本上,我怕忘了又~~~: 代码我是写在springboot2.1中的,有兴趣的同学可以玩一下~ 1:代码如 ...

  10. ASP Action函数 如何接收client传递的数据(编辑中。。。)

    参看链接:https://www.cnblogs.com/umlzhang/p/3654486.html 我这里总结一下,Action的参数的来源比较多 1.url 2.路由设定 3.post中的内容 ...