BZOJ.5305.[HAOI2018]苹果树(组合 计数)
BZOJ上除了0ms的Rank1啦。明明这题常数很好优化的。
首先,\(n=1\)时有\(2\)个位置放叶子,\(n=2\)时有\(3\)个... 可知\(n\)个点的有标号二叉树有\(n!\)种。(一个二叉树的中序遍历是唯一的,有\(n!\)种,也可以得到这个结论)
\(Sol1\)
考虑对每条边两边的点集计算贡献。即设一条边一边有\(size\)个点,另一边有\(n-size\)个点,那么它的贡献是\(size(n-size)\)。
直接把边放到点上,枚举每个点\(i\)(边就是\(i\to fa[i]\)),再枚举\(size_i\)。\(size_i\)就是\(i\)子树的大小。
考虑此时的方案数。\(i\)子树和\(i\)子树外是独立的。
对于\(i\)子树,有\(size_i!\)种树的形态,而标号分配有\(C_{n-i}^{size_i-1}\)种方案(\(i\)子树内点的编号要\(\geq i\))。所以\(i\)子树有\(size_i!\times C_{n-i}^{size_i-1}\)种。
对于\(i\)子树外部,首先构造出\(i\)个点的树有\(i!\)种方案。然后还有\(n-i-size_i+1\)个点需要放在\(i\)子树外的任意位置,方案数是\((i+1-2)(i+2-2)...(i+n-i-size_i+1-2)\)。两个乘起来,就是\(i(i-1)(n-size_i-1)!\)。
那么答案就是$$\sum_{i=2}n\sum_{size_i=1}{n-i+1}size_i(n-size_i)size_i!\cdot C_{n-i}^{size_i-1}\cdot i(i-1)(n-size_i-1)!$$
\(Sol2\)
递推。考虑由枚举大小为\(L,R\)的两棵左右子树来得到\(L+R+1\)个点的树。那么知道深度就可以算两棵子树间的距离了。
令\(f[i]\)表示\(i\)个节点的树,所有\(i!\)种可能中,所有点深度的和(根节点深度为\(1\))。
令\(g[i]\)表示\(i\)个节点的树,所有\(i!\)种可能中,所有点两两之间的距离的和。
转移的时候枚举左右子树的大小\(L,R=i-L-1\),有$$\begin{aligned}f[i]&=ii!+\sum_{L=0}{i-1}C_{i-1}L(f[L]R!+f[R]L!)\g[i]&=\sum_{L=0}{i-1}C_{i-1}L(g[L]R!+g[R]L!+f[L]R!(R+1)+f[R]L!*(L+1))\end{aligned}$$
这样\(g[n]\)就是答案啦。
//16540kb 196ms
#include <cstdio>
#define Mod(x) x>=mod&&(x-=mod)
typedef long long LL;
const int N=2005;
const LL LIM=1ll<<61;
int C[N][N],fac[N],g[N];
int main()
{
int n,mod; scanf("%d%d",&n,&mod);
C[0][0]=fac[0]=fac[1]=1;
for(int i=2; i<=n; ++i) fac[i]=1ll*i*fac[i-1]%mod;
for(int i=1; i<=n; ++i)
{
C[i][0]=C[i][i]=1;
for(int j=1; j<i; ++j) C[i][j]=C[i-1][j-1]+C[i-1][j], Mod(C[i][j]);
}
for(int i=1; i<=n; ++i) g[i]=1ll*i*(n-i)*fac[n-i-1]%mod*fac[i]%mod;
LL ans=0;
for(int i=2; i<=n; ++i)
for(int sz=n-i+1,tmp=i*(i-1); sz; --sz)
if((ans+=1ll*C[n-i][sz-1]*g[sz]%mod*tmp)>=LIM) ans%=mod;
printf("%lld\n",ans%mod);
return 0;
}
BZOJ.5305.[HAOI2018]苹果树(组合 计数)的更多相关文章
- BZOJ 5305: [Haoi2018]苹果树 组合计数
一定要注意要乘阶乘,细节很多. code: #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s ...
- luoguP4492 [HAOI2018]苹果树 组合计数 + dp
首先,每个二叉树对应着唯一的中序遍历,并且每个二叉树的概率是相同的 这十分的有用 考虑\(dp\)求解 令\(f_i\)表示\(i\)个节点的子树,根的深度为\(1\)时,所有点的期望深度之和(乘\( ...
- bzoj 5305: [Haoi2018]苹果树
Description Solution \(n\) 个点的二叉树的方案数是 \(n!\) 证明十分显然:新加入的点占掉了 \(1\) 个位置,新加了 \(2\) 个位置,那么多出来一个位置,所以第 ...
- [HAOI2018]苹果树(组合数学,计数)
[HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
随机推荐
- JGUI源码:DataTable固定列样式(20)
本来感觉这个固定列很容易实现的,一般都是几个table组合实现,真正自己从头做的时候,发现有很多坑,本文只是固定列原理,真正实现datatable的话,代码量比较大的,后续再进行完善. 使用左中右三个 ...
- Aras SP9里打开自己写的网页。
首先把自己写的网页挂在IIS里或者网站挂到IIS里面. 然后再Aras里新增method //网页参数 var dialogArguments = new Array(); //窗体参数 var op ...
- C# NPOI 操作Excel 案例
1.加入NPOI 程序集,使用nuget添加程序集 2.引用NPOI程序集 private IWorkbook ExportExcel(PrintQuotationOrderViewModel mod ...
- python—异常
异常是在程序中不可避免的,当程序遇到一个异常时程序就会停止,可以使用try—except进行处理异常,即便在出现异常程序也可以继续运行. 语法: try: 代码 except 异常名: 处理异常的代码 ...
- 解决本地SqlServer无法连接远程服务器数据库,错误10060
本地SqlServer 连不上服务器的数据库环境,错误信息如下图,折腾来折腾去,最终还是解决了 第一步 查看服务器本地端口是否已经打开,查看方法:首先向C:\Windows\System32文件夹添加 ...
- SQL SERVER获取信息的方法
获取数据库的表 SELECT obj.name tablename, schem.name schemname, CAST ( CASE ) ) END AS BIT) HasPrimaryKey f ...
- css3混合模式
https://juejin.im/entry/5b4802d15188251ac446d3a9
- Elemant-UI日期范围的表单验证
Form 组件提供了表单验证的功能,只需要通过 rules 属性传入约定的验证规则,并将 Form-Item 的 prop 属性设置为需校验的字段名即可.但是官网的示例只有普通日期类型的验证,没有时间 ...
- 「JavaScript面向对象编程指南」对象
对象的属性名可加上引号,下面三行代码所定义的内容是完全相同的 var hero = { occupation : 1 }; var hero = { "occupation" : ...
- Shiro权限管理
1.简介 Apache Shiro是Java的一个安全框架,对比Spring Security,没有Spring Security功能强大,但在实际工作时可能并不需要那么复杂,所以使用小而简单的Shi ...