题目传送门

  传送门

题目大意

  给定一个$n$个点$m$条边的带权有向图,问从$1$到$n$的距离不超过最短路长度$K$的路径数。

  跑一遍最短路。

  一个点拆$K + 1$个点,变成一个DAG上路径计数问题。直接拓扑排序加动态规划,如果有一个$n$号点的剩余度数非0,就一个合法的路径上存在零环(这样可以无线走了)。

  于是成功T掉了。

  把拓扑排序变成不建图,从$n$开始记忆化搜索,然后就过了。

  我居然把模数P打错成M调了一个上午,果然我菜啊。。。

  下面这份代码获得了 97 分的好成绩,我也不知道发生了什么。

Code

 /**
* Uoj
* Problem#331
* Accepted
* Time: 2392ms
* Memory: 28196k
*/
#include <iostream>
#include <cassert>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <queue>
using namespace std;
typedef bool boolean; typedef pair<int, int> pii; const int N = 1e5 + , M = 2e5 + , Kmx = ; const signed int inf = (signed) (~0u >> ); template <typename T>
void pfill(T* pst, const T* ped, T val) {
for ( ; pst != ped; *(pst++) = val);
} typedef class Edge {
public:
int ed, nx, w; Edge(int ed = , int nx = , int w = ):ed(ed), nx(nx), w(w) { }
}Edge; typedef class MapManager {
public:
int *h;
vector<Edge> es; MapManager(int n) {
h = new int[(n + )];
} void init(int n) {
pfill(h + , h + n + , -);
es.clear();
} void addEdge(int u, int v, int w) {
es.push_back(Edge(v, h[u], w));
h[u] = (signed) es.size() - ;
} Edge& operator [] (int p) {
return es[p];
}
}MapManager; typedef class Node {
public:
int p, dis; Node(int p = , int dis = ):p(p), dis(dis) { } boolean operator < (Node b) const {
return dis > b.dis;
}
}Node; int n, m, K, P;
MapManager g(N), _g(N); int add(int a, int b) {
return ((a += b) >= P) ? (a - P) : (a);
} inline void init() {
scanf("%d%d%d%d", &n, &m, &K, &P);
g.init(n + ), _g.init(n + );
for (int i = , u, v, w; i <= m; i++) {
scanf("%d%d%d", &u, &v, &w);
g.addEdge(u, v, w);
_g.addEdge(v, u, w);
}
} int f[N];
priority_queue<Node> que; int& operator * (Node p) {
return f[p.p];
} void dijstra() {
pfill(f + , f + n + , inf);
que.push(Node(, f[] = ));
while (!que.empty()) {
Node e = que.top();
que.pop();
if (*e != e.dis)
continue;
for (int i = g.h[e.p]; ~i; i = g[i].nx)
if (*e + g[i].w < f[g[i].ed])
que.push(Node(g[i].ed, f[g[i].ed] = *e + g[i].w));
}
} int h[N][Kmx];
unsigned char vis[N][Kmx];
boolean cir = false;
int dp(int p, int dif) {
if (dif > K)
return ;
if (dif < )
return ;
assert(dif >= );
if (vis[p][dif] & )
return cir = true;
if (vis[p][dif] & )
return h[p][dif];
vis[p][dif] |= , h[p][dif] = (p == && dif == );
for (int i = _g.h[p], e, nd; ~i; i = _g[i].nx) {
e = _g[i].ed;
if (f[e] == inf)
continue;
nd = f[p] + dif - _g[i].w - f[e];
h[p][dif] = add(h[p][dif], dp(e, nd));
if (cir)
return ;
}
vis[p][dif] ^= ;
return h[p][dif];
} inline void solve() {
dijstra();
if (f[n] == inf) {
puts("");
return;
}
cir = false;
pfill(vis[], vis[n + ], (unsigned char));
int rt = dp(n, );
for (int i = ; i <= K && !cir; i++)
rt = add(rt, dp(n, i));
printf("%d\n", (cir) ? (-) : (rt));
} int T;
int main() {
scanf("%d", &T);
while (T--) {
init();
solve();
}
return ;
}

NOIP 2017 逛公园 - 动态规划 - 最短路的更多相关文章

  1. NOIP 2017 逛公园 记忆化搜索 最短路 好题

    题目描述: 策策同学特别喜欢逛公园.公园可以看成一张N个点MM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. ...

  2. [NOIp 2017]逛公园

    Description 策策同学特别喜欢逛公园.公园可以看成一张$N$个点$M$条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,$N$号点是公园的出口,每条边有一个非负权值, 代表策策经 ...

  3. 洛谷 P3953 [ NOIP 2017 ] 逛公园 —— 最短路DP

    题目:https://www.luogu.org/problemnew/show/P3953 主要是看题解...还是觉得好难想啊... dfs DP,剩余容量的损耗是边权减去两点最短路差值...表示对 ...

  4. NOIP 2017 逛公园 题解

    题面 这道题是一道不错的计数类DP: 首先我们一定要跑一遍dijkstra来求得每个点到1号点的最短路: 注意题干,题中并没有说所有点都可以到达n好点,只说了存在一条1号点到n号点的路径:所以我们在反 ...

  5. 【NOIP2017】逛公园(最短路图,拓扑排序,计数DP)

    题意: 策策同学特别喜欢逛公园. 公园可以看成一张 N 个点 M 条边构成的有向图,且没有自环和重边.其中 1 号点是公园的入口, N 号点是公园的出口,每条边有一个非负权值,代表策策经过这条边所要花 ...

  6. P3953 逛公园(dp,最短路)

    P3953 逛公园 题目描述 策策同学特别喜欢逛公园.公园可以看成一张NN个点MM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,NN号点是公园的出口,每条边有一个非负权值, 代表策策经 ...

  7. Luogu3953 NOIP2017逛公园(最短路+拓扑排序+动态规划)

    跑一遍dij根据最短路DAG进行拓扑排序,按拓扑序dp即可.wa了三发感觉非常凉. #include<iostream> #include<cstdio> #include&l ...

  8. 2018.11.01 洛谷P3953 逛公园(最短路+dp)

    传送门 设f[i][j]f[i][j]f[i][j]表示跟最短路差值为iii当前在点jjj的方案数. in[i][j]in[i][j]in[i][j]表示在被选择的集合当中. 大力记忆化搜索就行了. ...

  9. NOIP2017 Day1 T3 逛公园(最短路+拓扑排序+DP)

    神tm比赛时多清个零就有60了T T 首先跑出1起点和n起点的最短路,因为k只有50,所以可以DP.设f[i][j]表示比最短路多走i的长度,到j的方案数. 我们发现如果在最短路上的和零边会有后向性, ...

随机推荐

  1. Confluo: Distributed Monitoring and Diagnosis Stack for High-speed Networks

    https://rise.cs.berkeley.edu/blog/confluo-millisecond-level-queries-on-large-scale-streaming-data/ht ...

  2. ip通信第七周

    局域网的优点:1.具有较高的数据传输率 2.具有较低的误码率 3.具有较低的时延 4.能进行广播 网桥的基本特征:1.网桥在数据链录层上实现局域网互连 2.网桥能够互连两个采用不同数据链路层协议,不同 ...

  3. WinAPI 字符及字符串函数(15): CharNext、CharPrev

    unit Unit1; interface uses   Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, For ...

  4. 多线程之Lock的基本介绍

    基本介绍 java.util.concurrent.locks是java1.5之后出现的一种锁实现方式,是一个接口.但是在这之前已经有一个同步机制的实现就是synchronized关键字,那为什么还要 ...

  5. python 包下载地址

    https://www.lfd.uci.edu/~gohlke/pythonlibs/

  6. linux获取网络信息函数

    获取IP地址 int sys_getIP(char *ip_addr) { ] = {"ifconfig eth0 | grep inet | cut -d: -f2 | cut -d' ' ...

  7. JS生成当前月份包括最近12个月内的月份

    var last_year_month = function() { var result = []; for(var i = 0; i < 12; i++) { var d = new Dat ...

  8. 20175211 2018-2019-2 《Java程序设计》第五周学习总结

    目录 教材学习内容总结 第六章 接口与实现 教材学习中的问题和解决过程 代码调试中的问题和解决过程 代码托管 上周考试错题总结 学习进度条 参考资料 教材学习内容总结 第六章 接口与实现 6.1 接口 ...

  9. Kali Hydra SSL issue, xHydra (GUI version of Hydra) works just fine

    First find the source code. (https://is.gd/LlS5Sy) - Example search Once located you must download i ...

  10. vue中上传文件之multipart/form-data

    首先在项目里用了拦截器的,由于拦截器会将传递的参数转成对象,所以你i提交的时候会发现multipart/form-data或转变成application/json 其次关于input的文件上传是需要一 ...