BLSTM的训练算法、解码算法以及模型的改进
摘要
BLSTM解码时,解码器需要等待整个音频到达后才开始解码,因为时间反方向的前向传播需要末尾的历史信息。BLSTM这一延时问题使其不适用与实时语音识别。context-sensitive-chunk BLSTM(CSC-LSTM)和latency-controlled BLSTM(LC-BLSTM,延时控制-双向LSTM)都将整句切分为数个chunks。通过在每个chunk中添加左右上下文帧,并以chunk为单位进行前向计算,BLSTM的延迟可以控制为一个chunk左右的时长,并且与传统BLSTM相比,可以保持原有准确率基本不变。文本提出了两种LC-BLSTM。通过使用不同类型的神经网络拓扑以初始化BLSTM的cell状态;通过上下文帧和快速在线识别以降低计算开销。320h Swbd实验显示本文的解码速度能加速24%至61%而无识别率的损失。
在LSTM声学模型(包括其变形,比如highway LSTM网络)中,双向LSTM的识别率远远优于单向LSTM。然而双向LSTM模型的延迟极高,不适用于在线语音识别。为了克服这一限制,文献[1]、文献[2]、文献[10]和文献[11]研究了基于Chunk的训练与解码。
Chunk BPTT
文献[5]提出了Chunk BPTT。
加速BPTT训练
- 将特征序列切分为固定长度的chunks
- 将多个chunks组合为更大的batches
对Chunk大小的调优
使用一块NVIDIA GTX680 GPU对IAM手写数据集的训练时间如下:
能取得FER与训练时间之间的平衡。
epochwise BPTT
GPU的内存大小限制了一个mini-batch中的序列数(对于很长的序列来说),这会导致加速效果较差。
CSC BPTT
文献[6]提出CSC(Context-Sensitive-Chunk) BPTT训练方法以及基于CSCs的解码方法,并应用于手写识别中。
epochwise BPTT可表示为0-Full+0,由于此处的chunk即完整的帧序列
BPTT在BLSTM-HMM中的应用,以及提出了基于CSCs的解码方法
文献[7]将CSC-BPTT应用于语音识别中。
受到语音语句中协同发音的影响,每个音素的语音帧基本上只受之前和之后几帧影响。那么,就没有必要用BLSTM对整句话进行建模。因此,只需对一个较小的chunk建模即可。
帧或850毫秒。
基于CSC的解码
对于使用CSC-BPTT训练的BLSTM,待识别的语句也要使用与训练时相同的配置切分为多个CSCs。
若需要考虑到计算复杂度,那么解码时CSCs之间可以没有重叠;否则,CSCs之间可以有若干帧的重叠,以取得更高的识别率。比如:
LC-BLSTM
CSC-BLSTM未利用历史chunk的记忆状态信息,这带来了额外的计算。文献[8]提出了延时控制-BLSTM(LC-BLSTM)。在时间反向计算中,LC-BLSTM只使用修剪过的下文信息用作cell状态的初始化。
LC-BLSTM的改进
由于LC-BLSTM的时间反向计算中需要额外对右下文进行计算,这大大增加了计算量。为此,文献[9]提出了LC-BLSTM-FA、LC-BLSTM-FABDI与LC-BLSTM-FABSR
LC-BLSTM Without Forward approximation
LC-BLSTM-FA(With Forward approximation)
LC-BLSTM-FA去除了上述无用的计算
本节介绍两种效率改进的LC-BLSTM,用于快速实时在线语音识别
LC-BLSTM-FABDI(Forward Approximation and Backward DNN Initialization)
每个BLSTM层的前向计算步可以分解为:
时间正向:
时间反向:
LC-BLSTM-FABSR(Forward Approximation and Backward Simple RNN)
第二种结构被称为"forward approximation and back-
SRNN的训练需要处理长程依赖,因此容易发生梯度爆炸。为此在LC-BLSTM-FABSR的训练中,需要使用更为严格的梯度修剪以促进收敛。
实验表明,LC-BLSTM-FA的WER优于LC-BLSTM-FABDI、LC-BLSTM-FABSR,但LC-BLSTM-FABDI和LC-BLSTM-FABSR的解码速度比前者快。
参考文献
- A. Zeyer, R. Schluter, and H. Ney, "Towards online-recognition with deep bidirectional LSTM acoustic models," Proceedings of Interspeech, vol. 08-12-Sept, pp. 3424–3428, 2016.
- P. Doetsch, M. Kozielski, and H. Ney, "Fast and Robust Training of Recurrent Neural Networks for Offline Handwriting Recognition," Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR, vol. 2014-Decem, pp. 279–284, 2014.
- K. Chen, Z.-J. Yan, and Q. Huo, "Training Deep Bidirectional LSTM Acoustic Model for LVCSR by a Context-Sensitive-Chunk BPTT Approach," in Proceedings of the Interspeech, 2015.
- A.-r. Mohamed, F. Seide, D. Yu, J. Droppo, A. Stoicke, G. Zweig, and G. Penn, "Deep bi-directional recurrent networks over spectral windows," in Automatic Speech Recognition and Understanding (ASRU), 2015 IEEE Workshop on. IEEE, 2015, pp. 78–83.
- P. Doetsch, M. Kozielski, and H. Ney, "Fast and Robust Training of Recurrent Neural Networks for Offline Handwriting Recognition," Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR, vol. 2014-Decem, pp. 279–284, 2014.
- K. Chen, Z.-J. Yan, and Q. Huo, "A context-sensitive-chunk BPTT approach to training deep LSTM/BLSTM recurrent neural networks for offline handwriting recognition," Proc. ICDAR-2015.
- K. Chen, Z.-J. Yan, and Q. Huo, "Training Deep Bidirectional LSTM Acoustic Model for LVCSR by a Context-Sensitive-Chunk BPTT Approach," in Proceedings of the Interspeech, 2015.
- Yu Zhang, Guoguo Chen, Dong Yu, and Kaisheng Yao, "High- way long short-term memory RNNs for distant speech recog- nition," in IEEE International Conference of Acoustics,Speech and Signal Processing (ICASSP), 2016, pp. 5755–5759.
- IMPROVING LATENCY-CONTROLLED BLSTM ACOUSTIC MODELS FOR ONLINE SPEECH RECOGNITION. Shaofei Xue, Zhijie Yan, Alibaba Inc, China
BLSTM的训练算法、解码算法以及模型的改进的更多相关文章
- 条件随机场CRF(三) 模型学习与维特比算法解码
条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在CRF系列的前两篇,我们总结了CRF的模型基 ...
- 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态 ...
- 程序员训练机器学习 SVM算法分享
http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine 摘要:支持向量机(SVM)已经成为一种非常受欢迎的算法.本文 ...
- h.264并行解码算法3D-Wave实现(基于多核共享内存系统)
3D-Wave算法是2D-Wave的扩展.3D-Wave相对于只在帧内并行的2D-Wave来说,多了帧间并行,不用等待前一帧完成解码后才开始下一帧的解码,而是只要宏块的帧间参考部分以及帧内依赖宏块解码 ...
- h.264并行解码算法2D-Wave实现(基于多核共享内存系统)
cache-coherent shared-memory system 我们最平常使用的很多x86.arm芯片都属于多核共享内存系统,这种系统表现为多个核心能直接对同一内存进行读写访问.尽管内存的存取 ...
- h.264并行解码算法2D-Wave实现(基于多核非共享内存系统)
在<Scalable Parallel Programming Applied to H.264/AVC Decoding>书中,作者基于双芯片18核的Cell BE系统实现了2D-Wav ...
- Base64编码和解码算法
Base64么新鲜的算法了.只是假设你没从事过页面开发(或者说动态页面开发.尤其是邮箱服务),你都不怎么了解过,仅仅是听起来非常熟悉. 对于黑客来说,Base64与MD5算法有着相同的位置.由于电子邮 ...
- 记录:EM 算法估计混合高斯模型参数
当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...
- Linux同步互斥(Peterson算法,生产者消费者模型)
同步 两个或两个以上随时间变化的量在变化过程中保持一定的相对关系. 互斥 对一组并发进程,一次只有一个进程能够访问一个给定的资源或执行一个给定的功能. 互斥技术可以用于解决诸如资源争用之类的冲突,还可 ...
随机推荐
- Golang mysql 上线的一个坑 Db.close重要性
急冲冲完成的mysql的一个监控自动处理程序上线了,线下处理是正常的,没想到线上才半小时就奔溃了. 现在时间是晚上11点,心慌焦虑涌上心头,需要熬夜?肾上腺素激增. 程序主要是一个定时任务的处理程序, ...
- Python开发【框架篇】Django的Form组件
Django的Form主要具有一下几大功能: 生成HTML标签 验证用户数据(显示错误信息) HTML Form提交保留上次提交数据 初始化页面显示内容 小试牛刀 1.创建Form类 from dja ...
- shell编程企业级实战
如何才能学好Shell编程 为什么要学习shell编程 Shell是Linux底层核心 Linux运维工作常用工具 自动化运维必备基础课程 学好shell编程所需Linux基础 熟练使用vim编辑器 ...
- cordova 自定义 plugin
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_30879415/article/details/81265455准备工作安装cordovanp ...
- openstack第一章:keystone
第一篇keystone— 身份认证服务 一.Keystone介绍: keystone 是OpenStack的组件之一,用于为OpenStack家族中的其它组件成员提供统一的认证服务,包括身 ...
- docker安装与测试 及 安装docker compose
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口 ...
- 使用python对py文件程序代码复用度检查
#!/user/bin/env python # @Time :2018/6/5 14:58 # @Author :PGIDYSQ #@File :PyCheck.py from os.path im ...
- 美化ubuntu18.04,并安装搜狗输入法
目录 美化Ubuntu 下载主题和图标文件 下载GNOME3 美化过程 安装输入法 下载并安装搜狗输入法 安装fcitx框架 安装过程 美化Ubuntu 下载主题和图标文件 下载地址:https:// ...
- Django在根据models生成数据库表时报 __init__() missing 1 required positional argument: 'on_delete'
from django.db import models # Create your models here. class Category(models.Model): caption = mode ...
- Mysql中的explain和desc
查询分析器 desc 和 explain 作用基本一样,explain速度快一点 explain 一条SQL语句出出现以下参数, 其中id,select_type,table 用于定位查询,表示本行参 ...