A fine property of the non-empty countable dense-in-self set in the real line

 

Zujin Zhang

School of Mathematics and Computer Science,

Gannan Normal University

Ganzhou 341000, P.R. China

zhangzujin361@163.com

MSC2010: 26A03.

Keywords: Dense-in-self set; countable set.

Abstract:

Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then we shall show that $\bar E\bs E$ is dense in $\bar E$.

1. Introduction and the main result

As is well-known, $\bbQ\subset\bbR^1$ is countable, dense-in-self (that is, $\bbQ\subset \bbQ'=\bbR^1$); and $\bbR^1\bs \bbQ$ is dense in $\bbR^1$.

We generalize this fact as

Theorem 1. Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then $\bar E\bs E$ is dense in $\bar E$.

Before proving Theorem 1, let us recall several related definitions and facts.

Definition 2. A set $E$ is closed iff $E'\subset E$. A set $E$ is dense-in-self iff $E\subset E'$; that is, $E$ has no isolated points. A set $E$ is complete iff $E'=E$.

A well-known complete set is the Cantor set. Moreover, we have

Lemma 3 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 51, Theorem 1). A non-empty complete set $E$ has power $c$; that is, there is a bijection between $E$ and $\bbR^1$.

Lemma 4 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 49, Theorem 7). A complete set $E$ has the form

$$\bex E=\sex{\bigcup_{n\geq 1}(a_n,b_n)}^c, \eex$$

where $(a_i,b_i)$, $(a_j,b_j)$ ($i\neq j$) have no common points.

2. Proof of Theorem 1。

Since $E$ is dense-in-self, we have $E\subset E'$, $\bar E=E'$. Also, by the fact that $E''=E'$, we see $E'$ is complete, and has power $c$. Note that $E$ is countable, we deduce $E'\bs E\neq \vno$.

Now that $E'$ is complete, we see by Lemma 4,

$$\bex E'^c=\bigcup_{n\geq 1}(a_n,b_n). \eex$$

For $\forall\ x\in E'$, $\forall\ \delta>0$, we have

$$\bee\label{dec} [x-\delta,x+\delta]\cap E'=\sex{[x-\delta,x+\delta]\cap (E'\bs E)} \cup\sex{[x-\delta,x+\delta]\cap E}. \eee$$

By analyzing the complement of $[x-\delta,x+\delta]\cap (E'\bs E)$, we see $[x-\delta,x+\delta]\cap E'$ (minus $\sed{x-\delta}$ if $x-\delta$ equals some $a_n$, and minus $\sed{x+\delta}$ if $x+\delta$ equals some $b_n$) is compelete, thus has power $c$. Due to the fact that $E$ is countable, we deduce from \eqref{dec} that

$$\bex [x-\delta,x+\delta]\cap (E'\bs E)\neq \vno. \eex$$

This completes the proof of Theorem 1.

A fine property of the non-empty countable dense-in-self set in the real line的更多相关文章

  1. A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$

    In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...

  2. Implement Property Value Validation in Code 在代码中实现属性值验证(XPO)

    This lesson explains how to set rules for business classes and their properties. These rules are val ...

  3. [翻译] Writing Property Editors 编写属性编辑器

    Writing Property Editors 编写属性编辑器   When you select a component in the designer its properties are di ...

  4. Python2.7.6标准库内建函数

        Built-in Functions     abs() divmod() input() open() staticmethod() all() enumerate() int() ord( ...

  5. python3.4 build in functions from 官方文档 翻译中

    2. Built-in Functions https://docs.python.org/3.4/library/functions.html?highlight=file The Python i ...

  6. python网络爬虫笔记(一)

    一.查询数据字典型数据 1.先说说dictionary查找和插入的速度极快,不会随着key的增加减慢速度,但是占用的内存大 2.list查找和插入的时间随着元素的增加而增加,但还是占用的空间小,内存浪 ...

  7. 【转】php容易犯错的10个地方

    原文地址: http://www.toptal.com/php/10-most-common-mistakes-php-programmers-make 译文地址:http://codecloud.n ...

  8. Practical Go: Real world advice for writing maintainable Go programs

    转自:https://dave.cheney.net/practical-go/presentations/qcon-china.html?from=timeline   1. Guiding pri ...

  9. .net两个对象比较,抛出不一样字段的结果

    现在应该经常用到记录操作日志,修改和新增必定涉及到两个实体的属性值的变动. 利用反射,将变动记录下来. 切记,类中的属性字段上面需要打上Description标签: 例如: /// <summa ...

随机推荐

  1. WPF中窗体最大化问题处理

    遇到的问题信息 问题:当WindowStyle=None时,窗口最大化,不显示任务栏 -- 即窗体是全屏效果. 解决中遇到的问题列表[主要涉及到任务栏发生改变后的一些问题处理]: 最大化时,任务栏被遮 ...

  2. 26 python 初学(线程、同步锁、死锁和递归锁)

    参考博客: www.cnblogs.com/yuanchenqi/articles/5733873.html 并发:一段时间内做一些事情 并行:同时做多件事情 线程是操作系统能够进行运算调度的基本单位 ...

  3. maven 发布快照版本后的引用

    使用nexus发布快照版本后, 引用项目问题 必须 <scope>test</scope> 才能引用快照.releases 不受此限制

  4. Scratch不仅适合小朋友,程序员和大学老师都应该广泛使用!!!

    去年接触到了Scratch这个编程工具,它是一种简易图形化编程工具,这个软件的开发团队来自于麻省理工大学称为“终身幼儿园团队”(Lifelong Kindergarten Group). 网址http ...

  5. 静态类(C#)

    基本简介: 类可以声明为 static 的,以指示它仅包含静态成员.不能使用 new 关键字创建静态类的实例.静态类在加载包含该类的程序或命名空间时由 .NET Framework 公共语言运行库 ( ...

  6. AtCoder Beginner Contest 124 D - Handstand(思维+前缀和)

    D - Handstand Time Limit: 2 sec / Memory Limit: 1024 MB Score : 400400 points Problem Statement NN p ...

  7. Java多线程9:中断机制

    一.概述 之前讲解Thread类中方法的时候,interrupt().interrupted().isInterrupted()三个方法没有讲得很清楚,只是提了一下.现在把这三个方法同一放到这里来讲, ...

  8. Flask的插件session、SQLAlchemy、Script、Migrate

    一.flask-session 1.为什么要使用flask-session 因为flask默认的session是通过请求上下文放入到Local中的,是存在内存的,而使用flask-session可以更 ...

  9. 【nowcoder-2017校招真题】保留最大的数

    牛客在线编程-保留最大的数 题目描述 给定一个十进制的正整数number,选择从里面去掉一部分数字,希望保留下来的数字组成的正整数最大. 输入描述: 输入为两行内容,第一行是正整数number,1 ≤ ...

  10. hdu5238 calculator (线段树+crt)

    (并不能)发现29393不是质数,而是等于7*13*17*19 于是可以用四个线段树分别维护模意义下,对x进行一个区间的操作后的值 最后再把这四个的答案用crt拼起来 也可以不crt,而是预处理0~2 ...