A fine property of the non-empty countable dense-in-self set in the real line

 

Zujin Zhang

School of Mathematics and Computer Science,

Gannan Normal University

Ganzhou 341000, P.R. China

zhangzujin361@163.com

MSC2010: 26A03.

Keywords: Dense-in-self set; countable set.

Abstract:

Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then we shall show that $\bar E\bs E$ is dense in $\bar E$.

1. Introduction and the main result

As is well-known, $\bbQ\subset\bbR^1$ is countable, dense-in-self (that is, $\bbQ\subset \bbQ'=\bbR^1$); and $\bbR^1\bs \bbQ$ is dense in $\bbR^1$.

We generalize this fact as

Theorem 1. Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then $\bar E\bs E$ is dense in $\bar E$.

Before proving Theorem 1, let us recall several related definitions and facts.

Definition 2. A set $E$ is closed iff $E'\subset E$. A set $E$ is dense-in-self iff $E\subset E'$; that is, $E$ has no isolated points. A set $E$ is complete iff $E'=E$.

A well-known complete set is the Cantor set. Moreover, we have

Lemma 3 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 51, Theorem 1). A non-empty complete set $E$ has power $c$; that is, there is a bijection between $E$ and $\bbR^1$.

Lemma 4 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 49, Theorem 7). A complete set $E$ has the form

$$\bex E=\sex{\bigcup_{n\geq 1}(a_n,b_n)}^c, \eex$$

where $(a_i,b_i)$, $(a_j,b_j)$ ($i\neq j$) have no common points.

2. Proof of Theorem 1。

Since $E$ is dense-in-self, we have $E\subset E'$, $\bar E=E'$. Also, by the fact that $E''=E'$, we see $E'$ is complete, and has power $c$. Note that $E$ is countable, we deduce $E'\bs E\neq \vno$.

Now that $E'$ is complete, we see by Lemma 4,

$$\bex E'^c=\bigcup_{n\geq 1}(a_n,b_n). \eex$$

For $\forall\ x\in E'$, $\forall\ \delta>0$, we have

$$\bee\label{dec} [x-\delta,x+\delta]\cap E'=\sex{[x-\delta,x+\delta]\cap (E'\bs E)} \cup\sex{[x-\delta,x+\delta]\cap E}. \eee$$

By analyzing the complement of $[x-\delta,x+\delta]\cap (E'\bs E)$, we see $[x-\delta,x+\delta]\cap E'$ (minus $\sed{x-\delta}$ if $x-\delta$ equals some $a_n$, and minus $\sed{x+\delta}$ if $x+\delta$ equals some $b_n$) is compelete, thus has power $c$. Due to the fact that $E$ is countable, we deduce from \eqref{dec} that

$$\bex [x-\delta,x+\delta]\cap (E'\bs E)\neq \vno. \eex$$

This completes the proof of Theorem 1.

A fine property of the non-empty countable dense-in-self set in the real line的更多相关文章

  1. A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$

    In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...

  2. Implement Property Value Validation in Code 在代码中实现属性值验证(XPO)

    This lesson explains how to set rules for business classes and their properties. These rules are val ...

  3. [翻译] Writing Property Editors 编写属性编辑器

    Writing Property Editors 编写属性编辑器   When you select a component in the designer its properties are di ...

  4. Python2.7.6标准库内建函数

        Built-in Functions     abs() divmod() input() open() staticmethod() all() enumerate() int() ord( ...

  5. python3.4 build in functions from 官方文档 翻译中

    2. Built-in Functions https://docs.python.org/3.4/library/functions.html?highlight=file The Python i ...

  6. python网络爬虫笔记(一)

    一.查询数据字典型数据 1.先说说dictionary查找和插入的速度极快,不会随着key的增加减慢速度,但是占用的内存大 2.list查找和插入的时间随着元素的增加而增加,但还是占用的空间小,内存浪 ...

  7. 【转】php容易犯错的10个地方

    原文地址: http://www.toptal.com/php/10-most-common-mistakes-php-programmers-make 译文地址:http://codecloud.n ...

  8. Practical Go: Real world advice for writing maintainable Go programs

    转自:https://dave.cheney.net/practical-go/presentations/qcon-china.html?from=timeline   1. Guiding pri ...

  9. .net两个对象比较,抛出不一样字段的结果

    现在应该经常用到记录操作日志,修改和新增必定涉及到两个实体的属性值的变动. 利用反射,将变动记录下来. 切记,类中的属性字段上面需要打上Description标签: 例如: /// <summa ...

随机推荐

  1. Jenkins+VS项目持续集成

    软件安装 安装包下载连接:https://jenkins.io/download/ 安装步奏:略 账户名:admin 密码:C:\Program Files (x86)\Jenkins\secrets ...

  2. JavaScript的函数闭包详细解释

    闭包是指有权访问另一个函数作用域中的变量的函数 一.创建闭包的常见的方式: 就是在一个函数内部创建另一个函数,通过另一个函数访问这个函数的局部变量. //通过闭包可以返回局部变量 function b ...

  3. python之shell

    import subprocess # 返回命令执行结果 # result = subprocess.call('ls -l', shell=True) # result = subprocess.c ...

  4. L1-8 矩阵A乘以B (15 分)

    给定两个矩阵A和B,要求你计算它们的乘积矩阵AB.需要注意的是,只有规模匹配的矩阵才可以相乘.即若A有R​a​​行.C​a​​列,B有R​b​​行.C​b​​列,则只有C​a​​与R​b​​相等时,两 ...

  5. 追逐心目中的那个Ta

    申明:全篇皆为作者臆想,浪漫主义代表派作品,若有雷同,纯属巧合 人生最难过的不就是在一无所有的年纪里遇到了最想呵护一生的人,而在拥有一切的时候却失去了不顾一切的心. 长夜漫漫,本是相思人,偏听多情曲, ...

  6. Centos下安装Mysql异常

    问题1: [root@localhost install-files]# rpm -ivh MySQL-server-5.6.27-1.el6.x86_64.rpm --nosignaturePrep ...

  7. BeanShell用法汇总(部分摘抄至网络)

    说明:本文部分资料摘抄至 来源: http://www.cnblogs.com/puresoul/p/4915350.html 来源: http://www.cnblogs.com/puresoul/ ...

  8. JS中的块级作用域,var、let、const三者的区别

    1. 块作用域{ } <script type="text/javascript"> { var a = 1; console.log(a); // 1 } conso ...

  9. 通过FactoryBean配置Bean

    这是配置Bean的第三种方式,FactoryBean是Spring为我们提供的,我们先来看看源码: 第一个方法:public abstract T getObject() throws Excepti ...

  10. 使用Spring表达式语言进行装备--SpEL

    本文主要想记录最近的两个使用spring框架实现通过配置文件装备Bean,以及使用SpEL装备Bean. 1.使用配置文件装备Bean: 当我们写某些Bean的时候是希望这个Bean当中的属性是可以通 ...