A fine property of the non-empty countable dense-in-self set in the real line

 

Zujin Zhang

School of Mathematics and Computer Science,

Gannan Normal University

Ganzhou 341000, P.R. China

zhangzujin361@163.com

MSC2010: 26A03.

Keywords: Dense-in-self set; countable set.

Abstract:

Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then we shall show that $\bar E\bs E$ is dense in $\bar E$.

1. Introduction and the main result

As is well-known, $\bbQ\subset\bbR^1$ is countable, dense-in-self (that is, $\bbQ\subset \bbQ'=\bbR^1$); and $\bbR^1\bs \bbQ$ is dense in $\bbR^1$.

We generalize this fact as

Theorem 1. Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then $\bar E\bs E$ is dense in $\bar E$.

Before proving Theorem 1, let us recall several related definitions and facts.

Definition 2. A set $E$ is closed iff $E'\subset E$. A set $E$ is dense-in-self iff $E\subset E'$; that is, $E$ has no isolated points. A set $E$ is complete iff $E'=E$.

A well-known complete set is the Cantor set. Moreover, we have

Lemma 3 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 51, Theorem 1). A non-empty complete set $E$ has power $c$; that is, there is a bijection between $E$ and $\bbR^1$.

Lemma 4 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 49, Theorem 7). A complete set $E$ has the form

$$\bex E=\sex{\bigcup_{n\geq 1}(a_n,b_n)}^c, \eex$$

where $(a_i,b_i)$, $(a_j,b_j)$ ($i\neq j$) have no common points.

2. Proof of Theorem 1。

Since $E$ is dense-in-self, we have $E\subset E'$, $\bar E=E'$. Also, by the fact that $E''=E'$, we see $E'$ is complete, and has power $c$. Note that $E$ is countable, we deduce $E'\bs E\neq \vno$.

Now that $E'$ is complete, we see by Lemma 4,

$$\bex E'^c=\bigcup_{n\geq 1}(a_n,b_n). \eex$$

For $\forall\ x\in E'$, $\forall\ \delta>0$, we have

$$\bee\label{dec} [x-\delta,x+\delta]\cap E'=\sex{[x-\delta,x+\delta]\cap (E'\bs E)} \cup\sex{[x-\delta,x+\delta]\cap E}. \eee$$

By analyzing the complement of $[x-\delta,x+\delta]\cap (E'\bs E)$, we see $[x-\delta,x+\delta]\cap E'$ (minus $\sed{x-\delta}$ if $x-\delta$ equals some $a_n$, and minus $\sed{x+\delta}$ if $x+\delta$ equals some $b_n$) is compelete, thus has power $c$. Due to the fact that $E$ is countable, we deduce from \eqref{dec} that

$$\bex [x-\delta,x+\delta]\cap (E'\bs E)\neq \vno. \eex$$

This completes the proof of Theorem 1.

A fine property of the non-empty countable dense-in-self set in the real line的更多相关文章

  1. A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$

    In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...

  2. Implement Property Value Validation in Code 在代码中实现属性值验证(XPO)

    This lesson explains how to set rules for business classes and their properties. These rules are val ...

  3. [翻译] Writing Property Editors 编写属性编辑器

    Writing Property Editors 编写属性编辑器   When you select a component in the designer its properties are di ...

  4. Python2.7.6标准库内建函数

        Built-in Functions     abs() divmod() input() open() staticmethod() all() enumerate() int() ord( ...

  5. python3.4 build in functions from 官方文档 翻译中

    2. Built-in Functions https://docs.python.org/3.4/library/functions.html?highlight=file The Python i ...

  6. python网络爬虫笔记(一)

    一.查询数据字典型数据 1.先说说dictionary查找和插入的速度极快,不会随着key的增加减慢速度,但是占用的内存大 2.list查找和插入的时间随着元素的增加而增加,但还是占用的空间小,内存浪 ...

  7. 【转】php容易犯错的10个地方

    原文地址: http://www.toptal.com/php/10-most-common-mistakes-php-programmers-make 译文地址:http://codecloud.n ...

  8. Practical Go: Real world advice for writing maintainable Go programs

    转自:https://dave.cheney.net/practical-go/presentations/qcon-china.html?from=timeline   1. Guiding pri ...

  9. .net两个对象比较,抛出不一样字段的结果

    现在应该经常用到记录操作日志,修改和新增必定涉及到两个实体的属性值的变动. 利用反射,将变动记录下来. 切记,类中的属性字段上面需要打上Description标签: 例如: /// <summa ...

随机推荐

  1. iOS Accessibility指南

    开发者经常会为用户开发一些令人充满惊喜的App.但是,开发者真的为每一个潜在的用户都做适配了么?是否每个人都可以真正使用你的APP呢? 设计APP.产品或者任何类型的服务,都要考虑到所有用户,包括视力 ...

  2. 个人对JS原型链的一些理解(prototype、__proto__)

    前言 在我一开始学习java web的时候,对JS就一直抱着一种只是简单用用的心态,于是并没有一步一步地去学习,当时认为用法与java类似,但是在实际web项目中使用时却比较麻烦,便直接粗略了解后开始 ...

  3. .net 调用java service 代理类方法

        通过Svcutil.exe 工具生成代理类调用 1.找到如下地址“C:\Windows\System32\cmd.exe”  命令行工具,右键以管理员身份运行(视系统是否为win7 而定) 2 ...

  4. Oracle 查询表对应的索引

    select col.table_owner "table_owner", idx.table_name "table_name", col.index_own ...

  5. Centos7.x做开机启动脚本

    cat /etc/centos-release CentOS Linux release 7.4.1708 (Core) uname -r 3.10.0-693.11.1.el7.x86_64 vim ...

  6. springBoot集成redisCluster

    本文主要内容:springBoot简介,在SpringBoot中如何集成Redis,可配置Redis集群. 关于SpringBoot 你想要的,这里都有:https://spring.io/proje ...

  7. VirtualBox修改UUID实现虚拟硬盘的重复利用

    其实,记录这个是为了留给自己看.每次用每次查,已经老到什么东西都记不住了.本次查询是从这里(VirtualBox 修改UUID实现虚拟硬盘复制)获得帮助的,感谢. 在VirtualBox把一个已经使用 ...

  8. Spring-data-redis操作redis知识总结

    什么是spring-data-redis spring-data-redis是spring-data模块的一部分,专门用来支持在spring管理项目对redis的操作,使用java操作redis最常用 ...

  9. Linux内存管理 (13)回收页面

    专题:Linux内存管理专题 关键词:LRU.活跃/不活跃-文件缓存/匿名页面.Refault Distance. 页面回收.或者回收页面也即page reclaim,依赖于LRU链表对页面进行分类: ...

  10. python之yagmail模块--小白博客

    yagmail 实现发邮件 yagmail 可以简单的来实现自动发邮件功能. 安装 pip install yagmail 简单例子 import yagmail #链接邮箱服务器 yag = yag ...