A fine property of the non-empty countable dense-in-self set in the real line
A fine property of the non-empty countable dense-in-self set in the real line
Zujin Zhang
School of Mathematics and Computer Science,
Gannan Normal University
Ganzhou 341000, P.R. China
MSC2010: 26A03.
Keywords: Dense-in-self set; countable set.
Abstract:
Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then we shall show that $\bar E\bs E$ is dense in $\bar E$.
1. Introduction and the main result
As is well-known, $\bbQ\subset\bbR^1$ is countable, dense-in-self (that is, $\bbQ\subset \bbQ'=\bbR^1$); and $\bbR^1\bs \bbQ$ is dense in $\bbR^1$.
We generalize this fact as
Theorem 1. Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then $\bar E\bs E$ is dense in $\bar E$.
Before proving Theorem 1, let us recall several related definitions and facts.
Definition 2. A set $E$ is closed iff $E'\subset E$. A set $E$ is dense-in-self iff $E\subset E'$; that is, $E$ has no isolated points. A set $E$ is complete iff $E'=E$.
A well-known complete set is the Cantor set. Moreover, we have
Lemma 3 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 51, Theorem 1). A non-empty complete set $E$ has power $c$; that is, there is a bijection between $E$ and $\bbR^1$.
Lemma 4 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 49, Theorem 7). A complete set $E$ has the form
$$\bex E=\sex{\bigcup_{n\geq 1}(a_n,b_n)}^c, \eex$$
where $(a_i,b_i)$, $(a_j,b_j)$ ($i\neq j$) have no common points.
2. Proof of Theorem 1。
Since $E$ is dense-in-self, we have $E\subset E'$, $\bar E=E'$. Also, by the fact that $E''=E'$, we see $E'$ is complete, and has power $c$. Note that $E$ is countable, we deduce $E'\bs E\neq \vno$.
Now that $E'$ is complete, we see by Lemma 4,
$$\bex E'^c=\bigcup_{n\geq 1}(a_n,b_n). \eex$$
For $\forall\ x\in E'$, $\forall\ \delta>0$, we have
$$\bee\label{dec} [x-\delta,x+\delta]\cap E'=\sex{[x-\delta,x+\delta]\cap (E'\bs E)} \cup\sex{[x-\delta,x+\delta]\cap E}. \eee$$
By analyzing the complement of $[x-\delta,x+\delta]\cap (E'\bs E)$, we see $[x-\delta,x+\delta]\cap E'$ (minus $\sed{x-\delta}$ if $x-\delta$ equals some $a_n$, and minus $\sed{x+\delta}$ if $x+\delta$ equals some $b_n$) is compelete, thus has power $c$. Due to the fact that $E$ is countable, we deduce from \eqref{dec} that
$$\bex [x-\delta,x+\delta]\cap (E'\bs E)\neq \vno. \eex$$
This completes the proof of Theorem 1.
A fine property of the non-empty countable dense-in-self set in the real line的更多相关文章
- A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$
In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...
- Implement Property Value Validation in Code 在代码中实现属性值验证(XPO)
This lesson explains how to set rules for business classes and their properties. These rules are val ...
- [翻译] Writing Property Editors 编写属性编辑器
Writing Property Editors 编写属性编辑器 When you select a component in the designer its properties are di ...
- Python2.7.6标准库内建函数
Built-in Functions abs() divmod() input() open() staticmethod() all() enumerate() int() ord( ...
- python3.4 build in functions from 官方文档 翻译中
2. Built-in Functions https://docs.python.org/3.4/library/functions.html?highlight=file The Python i ...
- python网络爬虫笔记(一)
一.查询数据字典型数据 1.先说说dictionary查找和插入的速度极快,不会随着key的增加减慢速度,但是占用的内存大 2.list查找和插入的时间随着元素的增加而增加,但还是占用的空间小,内存浪 ...
- 【转】php容易犯错的10个地方
原文地址: http://www.toptal.com/php/10-most-common-mistakes-php-programmers-make 译文地址:http://codecloud.n ...
- Practical Go: Real world advice for writing maintainable Go programs
转自:https://dave.cheney.net/practical-go/presentations/qcon-china.html?from=timeline 1. Guiding pri ...
- .net两个对象比较,抛出不一样字段的结果
现在应该经常用到记录操作日志,修改和新增必定涉及到两个实体的属性值的变动. 利用反射,将变动记录下来. 切记,类中的属性字段上面需要打上Description标签: 例如: /// <summa ...
随机推荐
- sqlmap --tamper 绕过WAF脚本分类整理
分类: https://blog.csdn.net/whatday/article/details/54774043 详细介绍: https://blog.csdn.net/qq_34444097/a ...
- tomcat+struts配置总结
忙活了好些天Tomcat和Struts配置,踩了好多坑 此文仅供参考,只是笔者自身的记录. 配置在这里就不赘述了,贴几个链接给你们参考把! 一.配置简述 jdk配置 https://blog.csdn ...
- python离线安装包
一.用download命令离线下载包 *.whl , 这个方法好像python3.7以上才能用 那么我的requirement.txt内容就是: django==1.8.11 simplejson= ...
- SQL NOT NULL 约束
SQL NOT NULL 约束 NOT NULL 约束强制列不接受 NULL 值. NOT NULL 约束强制字段始终包含值.这意味着,如果不向字段添加值,就无法插入新记录或者更新记录. 下面的 SQ ...
- Linux之指令 重定向 文件覆盖>和文件追加>>
指令>和>>区别 指令 > : 如果文件存在,将原来文件的内容覆盖:原文件不存在则创建文件,再添加信息. 指令 >>:不会覆盖原文件内容,将内容追加到文件的尾部. ...
- 转://Oracle数据库升级后保障SQL性能退化浅谈
一.数据库升级后保障手段 为了保障从10.2.0.4版本升级到11.2.0.4版本更加平稳,我们事先采用了oracle性能分析器(SQL Performance Analyzer)来预测数据库的关键S ...
- redis分页
模仿的https://www.cnblogs.com/dee0912/p/4612183.html 第一步连接redis后进行添加数据 require_once '../redis/redis.php ...
- Cordova入门系列(三)Cordova插件调用
版权声明:本文为博主原创文章,转载请注明出处 上一章我们介绍了cordova android项目是如何运行的,这一章我们介绍cordova的核心内容,插件的调用.演示一个例子,通过cordova插件, ...
- SQLi “百度杯”CTF比赛 九月场
试一下1=1 发下username为空,说明哪里出问题了,是没有注入吗?还是被过滤了?试一下#号的url编码%23 编码后,返回的结果是对的,证明是的,有注入 1=2就返回空了 看了wp,就觉得自己的 ...
- Kafka 详解(二)------集群搭建
这里通过 VMware ,我们安装了三台虚拟机,用来搭建 kafka集群,虚拟机网络地址如下: hostname ipaddress ...