题目链接:

https://www.luogu.org/problemnew/show/CF1153D

(cf崩了,贴了个落谷的)

题目大意:给你n个点,然后n-1条边,构成一棵树,每个点是子节点的最大值或最小值,将叶子节点填上整数(1~k,k为叶子节点的个数),使这棵树的根最大。

具体思路:对于每一个非叶子节点,假设他的值是x,如果这个点是取max,那么就要求这个节点的子节点中至少有一个是等于x的,其他都是小于x的。如果这个点是取min,那么就要求这个节点的子节点的值都是大于等于x的。然后再继续分析,我们把当前的节点赋值 为他的子树中叶子节点的个数,那么当这个节点为取max的时候,我们就相当于他的所有子节点中取一个最大的就可以了。也就是相当于从子树中取一个最小消耗量。当为min的时候,当前节点的消耗量为他的所有子节点的消耗量之和。然后根节点的最大数就变成了k-num[1]+1.num[1]为根节点的消耗量。

AC代码:

 #include<bits/stdc++.h>
using namespace std;
# define inf 0x3f3f3f3f
# define ll long long
const int maxn = 3e5+;
int col[maxn];
vector<int>Edge[maxn];
int tot=;
int num[maxn];
void dfs(int u)
{
if(Edge[u].size()==)
{ tot++;
num[u]=;
return ;
}
if(col[u])
num[u]=inf;
else
num[u]=;
for(int i=; i<Edge[u].size(); i++)
{
int to=Edge[u][i];
dfs(to);
if(col[u])
num[u]=min(num[to],num[u]);
else
num[u]+=num[to];
}
return ;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=; i<=n; i++)
scanf("%d",&col[i]);
int tmp;
for(int i=; i<=n; i++)
{
scanf("%d",&tmp);
Edge[tmp].push_back(i);
}
dfs();
printf("%d\n",tot-num[]+);
return ;
}

CF1153D Serval and Rooted Tree(树形DP)的更多相关文章

  1. Codeforces Round #551 (Div. 2) D. Serval and Rooted Tree (树形dp)

    题目:http://codeforces.com/contest/1153/problem/D 题意:给你一棵树,每个节点有一个操作,0代表取子节点中最小的那个值,1代表取子节点中最大的值,叶子节点的 ...

  2. CF 551 D.Serval and Rooted Tree 树形DP

    传送门:http://codeforces.com/contest/1153/problem/D 思路: 这道题想了一天,突发奇想,就是维护每个点两个值,第几大和第几小,就可以有传递性了. #incl ...

  3. CF1153D Serval and Rooted Tree

    题目地址:CF1153D Serval and Rooted Tree 挺好玩儿也挺考思维的一道题 思路:树形DP+贪心 数组 \(d\) 维护这样一个值: 对于一个节点 \(x\) ,它的值最大可以 ...

  4. cf-Round551-Div2-D. Serval and Rooted Tree(DP)

    题目链接:https://codeforces.com/contest/1153/problem/D 题意:有一棵树,给定结点数n,在每个结点上的操作(max:表示该结点的number为其孩子结点中的 ...

  5. D. Serval and Rooted Tree (樹狀DP)

    Codeforce 1153D Serval and Rooted Tree (樹狀DP) 今天我們來看看CF1153D 題目連結 題目 給一棵數,假設有$k$個葉節點,我們可以給葉節點分配$1$~$ ...

  6. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  7. Codeforces Round #551 (Div. 2) D. Serval and Rooted Tree (树形dp)

    题目链接 题意:给你一个有根树,假设有k个叶子节点,你可以给每个叶子节点编个号,要求编号不重复且在1-k以内.然后根据节点的max,minmax,minmax,min信息更新节点的值,要求根节点的值最 ...

  8. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  9. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

随机推荐

  1. 微信小程序支付,带java源码

    先说下这个的背景吧... 本人是做java后端的,自认为还有很大的发展空间(嘻嘻,你懂的),看过一段时间的小程序可是没有支付成功...最近公司要做小程序项目,老大让我看下小程序,折腾了好几天,参照着h ...

  2. OpenCV 与 OpenGL 的关系是什么?

    OpenCV是 Open Source Computer Vision LibraryOpenGL是 Open Graphics LibraryOpenCV主要是提供图像处理和视频处理的基础算法库,还 ...

  3. Resolving Issues of "Library Cache Pin" or "Cursor Pin S wait on X" (Doc ID 1476663.1)

    Doc ID 1476663.1) To Bottom In this Document   Purpose   Troubleshooting Steps   Brief Definition:   ...

  4. Auto Layout - BNR

    继续UIImageView - BNR篇. 通过Homepwner TARGETS -> General -> Deployment Info -> Devices中的iPhone改 ...

  5. linux下开启、关闭、重启mysql服务命令

    一. 启动1.使用 service 启动:service mysql start2.使用 mysqld 脚本启动:/etc/inint.d/mysql start3.使用 safe_mysqld 启动 ...

  6. 一篇博客带你入门Flask

    一. Python 现阶段三大主流Web框架 Django Tornado Flask 对比 1.Django 主要特点是大而全,集成了很多组件,例如: Models Admin Form 等等, 不 ...

  7. C语言之概述

    //添加对函数的说明(规范) #include<stdio.h> /*A simple C progress*/ int main(void) { int num; /*Define an ...

  8. 转:Flutter动画一

    1. 动画介绍 动画对于App来说,非常的重要.很多App,正是因为有了动画,所以才会觉得炫酷.移动端的动画库有非常的多,例如iOS上的Pop.web端的animate.css.Android端的An ...

  9. centos django Failed to load resource: net::ERR_INCOMPLETE_CHUNKED_ENCODING

    os环境 centos python2.7.5 django1.10.8 class AdminAutoRunTask(View): """ 自动跑外放任务 " ...

  10. 作业二:分布式版本控制系统Git的安装与使用

    作业要求来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/2097 1.下载安装配置用户名和邮箱. (1)下载安装Github配置 ...