Celery是由Python开发的一个简单、灵活、可靠的处理大量任务的分发系统,它不仅支持实时处理也支持任务调度。

  • user:用户程序,用于告知celery去执行一个任务。
  • broker: 存放任务(依赖RabbitMQ或Redis,进行存储)
  • worker:执行任务

celery需要rabbitMQ、Redis、Amazon SQS、Zookeeper(测试中) 充当broker来进行消息的接收,并且也支持多个broker和worker来实现高可用和分布式。http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html

    Celery version 4.0 runs on
Python ❨2.7, 3.4, 3.5❩
PyPy ❨5.4, 5.5❩
This is the last version to support Python 2.7, and from the next version (Celery 5.x) Python 3.5 or newer is required.
If you’re running an older version of Python, you need to be running an older version of Celery:

    Python </span>2.6: Celery series 3.1 <span style="color: #0000ff;">or</span><span style="color: #000000;"> earlier.
Python </span>2.5: Celery series 3.0 <span style="color: #0000ff;">or</span><span style="color: #000000;"> earlier.
Python </span>2.4 was Celery series 2.2 <span style="color: #0000ff;">or</span><span style="color: #000000;"> earlier. Celery </span><span style="color: #0000ff;">is</span> a project with minimal funding, so we don&rsquo;t support Microsoft Windows. Please don&rsquo;t open any issues related to that platform.</pre>

版本和要求

环境准备:

  • 安装rabbitMQ或Redis
        见:http://www.cnblogs.com/wupeiqi/articles/5132791.html
  • 安装celery
         pip3 install celery

快速上手

import time
from celery import Celery app = Celery('tasks', broker='redis://192.168.10.48:6379', backend='redis://192.168.10.48:6379') @app.task

def xxxxxx(x, y):

time.sleep(10)

return x + y

s1.py

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from s1 import xxxxxx # 立即告知celery去执行xxxxxx任务,并传入两个参数

result = xxxxxx.delay(4, 4)

print(result.id)

s2.py

from celery.result import AsyncResult
from s1 import app async = AsyncResult(id="f0b41e83-99cf-469f-9eff-74c8dd600002", app=app) if async.successful():

result = async.get()

print(result)

# result.forget() # 将结果删除

elif async.failed():

print('执行失败')

elif async.status == 'PENDING':

print('任务等待中被执行')

elif async.status == 'RETRY':

print('任务异常后正在重试')

elif async.status == 'STARTED':

print('任务已经开始被执行')

s3.py

执行 s1.py 创建worker(终端执行命令):

celery worker -A s1 -l info

执行 s2.py ,创建一个任务并获取任务ID:

python3 s2.py 

执行 s3.py ,检查任务状态并获取结果:

python3 s3.py

多任务结构

pro_cel
├── celery_tasks# celery相关文件夹
│   ├── celery.py # celery连接和配置相关文件
│   └── tasks.py # 所有任务函数
├── check_result.py # 检查结果
└── send_task.py # 触发任务
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from celery import Celery celery = Celery('xxxxxx',

broker='redis://192.168.0.111:6379',

backend='redis://192.168.0.111:6379',

include=['celery_tasks.tasks']) # 时区

celery.conf.timezone = 'Asia/Shanghai'

# 是否使用UTC

celery.conf.enable_utc = False

pro_cel/celery_tasks/celery

#!/usr/bin/env python
# -*- coding:utf-8 -*- import time

from .celery import celery @celery.task

def xxxxx(*args, **kwargs):

time.sleep(5)

return "任务结果" @celery.task

def hhhhhh(*args, **kwargs):

time.sleep(5)

return "任务结果"

pro_cel/celery_tasks/tasks.py

#!/usr/bin/env python
# -*- coding:utf-8 -*- from celery.result import AsyncResult

from celery_tasks.celery import celery async = AsyncResult(id="ed88fa52-11ea-4873-b883-b6e0f00f3ef3", app=celery) if async.successful():

result = async.get()

print(result)

# result.forget() # 将结果删除

elif async.failed():

print('执行失败')

elif async.status == 'PENDING':

print('任务等待中被执行')

elif async.status == 'RETRY':

print('任务异常后正在重试')

elif async.status == 'STARTED':

print('任务已经开始被执行')

pro_cel/check_result.py

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import celery_tasks.tasks # 立即告知celery去执行xxxxxx任务,并传入两个参数

result = celery_tasks.tasks.xxxxx.delay(4, 4) print(result.id)

pro_cel/send_task.py

更多配置:http://docs.celeryproject.org/en/latest/userguide/configuration.html

定时任务

1. 设定时间让celery执行一个任务

import datetime
from celery_tasks.tasks import xxxxx
"""
from datetime import datetime v1 = datetime(2017, 4, 11, 3, 0, 0)

print(v1) v2 = datetime.utcfromtimestamp(v1.timestamp())

print(v2) """

ctime = datetime.datetime.now()

utc_ctime = datetime.datetime.utcfromtimestamp(ctime.timestamp()) s10 = datetime.timedelta(seconds=10)

ctime_x = utc_ctime + s10

使用apply_async并设定时间

result = xxxxx.apply_async(args=[1, 3], eta=ctime_x)

print(result.id)

2. 类似于contab的定时任务

"""
celery beat -A proj
celery worker -A proj -l info """

from celery import Celery

from celery.schedules import crontab app = Celery('tasks', broker='amqp://47.98.134.86:5672', backend='amqp://47.98.134.86:5672', include=['proj.s1', ])

app.conf.timezone = 'Asia/Shanghai'

app.conf.enable_utc = False app.conf.beat_schedule = {

# 'add-every-10-seconds': {

# 'task': 'proj.s1.add1',

# 'schedule': 10.0,

# 'args': (16, 16)

# },

'add-every-12-seconds': {

'task': 'proj.s1.add1',

'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),

'args': (16, 16)

},

}

注:如果想要定时执行类似于crontab的任务,需要定制 Scheduler来完成。

Flask中应用Celery

pro_flask_celery/
├── app.py
├── celery_tasks
   ├── celery.py
    └── tasks.py
#!/usr/bin/env python
# -*- coding:utf-8 -*- from flask import Flask

from celery.result import AsyncResult from celery_tasks import tasks

from celery_tasks.celery import celery app = Flask(name) TASK_ID = None @app.route('/')

def index():

global TASK_ID

result = tasks.xxxxx.delay()

# result = tasks.task.apply_async(args=[1, 3], eta=datetime(2018, 5, 19, 1, 24, 0))

TASK_ID = result.id
</span><span style="color: #0000ff;">return</span> <span style="color: #800000;">"</span><span style="color: #800000;">任务已经提交</span><span style="color: #800000;">"</span><span style="color: #000000;">

@app.route('/result')

def result():

global TASK_ID

result = AsyncResult(id=TASK_ID, app=celery)

if result.ready():

return result.get()

return "xxxx"

if name == 'main':

app.run()

app.py

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from celery import Celery
from celery.schedules import crontab celery = Celery('xxxxxx',

broker='redis://192.168.10.48:6379',

backend='redis://192.168.10.48:6379',

include=['celery_tasks.tasks']) # 时区

celery.conf.timezone = 'Asia/Shanghai'

# 是否使用UTC

celery.conf.enable_utc = False

celery_tasks/celery.py

#!/usr/bin/env python
# -*- coding:utf-8 -*- import time

from .celery import celery @celery.task

def hello(*args, **kwargs):

print('执行hello')

return "hello" @celery.task

def xxxxx(*args, **kwargs):

print('执行xxxxx')

return "xxxxx" @celery.task

def hhhhhh(*args, **kwargs):

time.sleep(5)

return "任务结果"

celery_task/tasks.py

Django中应用Celery

一、基本使用

django_celery_demo
├── app01
│   ├── __init__.py
│   ├── admin.py
│   ├── apps.py
│   ├── migrations
│   ├── models.py
│   ├── tasks.py
│   ├── tests.py
│   └── views.py
├── db.sqlite3
├── django_celery_demo
│   ├── __init__.py
│   ├── celery.py
│   ├── settings.py
│   ├── urls.py
│   └── wsgi.py
├── manage.py
├── red.py
└── templates
#!/usr/bin/env python
# -*- coding:utf-8 -*- import os

from celery import Celery # set the default Django settings module for the 'celery' program.

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'django_celery_demo.settings') app = Celery('django_celery_demo') # Using a string here means the worker doesn't have to serialize

the configuration object to child processes.

- namespace='CELERY' means all celery-related configuration keys

should have a CELERY_ prefix.

app.config_from_object('django.conf:settings', namespace='CELERY') # Load task modules from all registered Django app configs.

app.autodiscover_tasks()

django_celery_demo/celery.py

from .celery import app as celery_app

all = ('celery_app',)

django_celery_demo/__init__.py

from celery import shared_task

@shared_task

def add(x, y):

return x + y @shared_task

def mul(x, y):

return x * y @shared_task

def xsum(numbers):

return sum(numbers)

app01/tasks.py

...
....
.....
# ######################## Celery配置 ########################
CELERY_BROKER_URL = 'redis://10.211.55.20:6379'
CELERY_ACCEPT_CONTENT = ['json']
CELERY_RESULT_BACKEND = 'redis://10.211.55.20:6379'
CELERY_TASK_SERIALIZER = 'json'

django_celery_demo/settings.py

from django.shortcuts import render, HttpResponse
from app01 import tasks
from django_celery_demo import celery_app
from celery.result import AsyncResult def index(request):

result = tasks.add.delay(1, 8)

print(result)

return HttpResponse('...') def check(request):

task_id = request.GET.get('task')

async = AsyncResult(id=task_id, app=celery_app)

if async.successful():

data = async.get()

print('成功', data)

else:

print('任务等待中被执行')
</span><span style="color: #0000ff;">return</span> HttpResponse(<span style="color: #800000;">'</span><span style="color: #800000;">...</span><span style="color: #800000;">'</span>)</pre>

app01/views.py

"""django_celery_demo URL Configuration

The urlpatterns list routes URLs to views. For more information please see:

https://docs.djangoproject.com/en/1.11/topics/http/urls/

Examples:

Function views

1. Add an import: from my_app import views

2. Add a URL to urlpatterns: url(r'^\(', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: url(r'^\)', Home.as_view(), name='home')

Including another URLconf

1. Import the include() function: from django.conf.urls import url, include

2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls'))

"""

from django.conf.urls import url

from django.contrib import admin

from app01 import views urlpatterns = [

url(r'^admin/', admin.site.urls),

url(r'^index/', views.index),

url(r'^check/', views.check),

]

django_celery_demo/urls.py

二、定时任务

1. 安装

install django-celery-beat

2. 注册app

INSTALLED_APPS = (
...,
'django_celery_beat',
)

3. 数据库去迁移生成定时任务相关表

python manage.py migrate

4. 设置定时任务

  • 方式一:代码中配置

    #!/usr/bin/env python
    # -*- coding:utf-8 -*- import os

    from celery import Celery # set the default Django settings module for the 'celery' program.

    os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'django_celery_demo.settings') app = Celery('django_celery_demo') # Using a string here means the worker doesn't have to serialize

    the configuration object to child processes.

    - namespace='CELERY' means all celery-related configuration keys

    should have a CELERY_ prefix.

    app.config_from_object('django.conf:settings', namespace='CELERY') app.conf.beat_schedule = {

    'add-every-5-seconds': {

    'task': 'app01.tasks.add',

    'schedule': 5.0,

    'args': (16, 16)

    },

    } # Load task modules from all registered Django app configs.

    app.autodiscover_tasks()

    django_celery_demo/celery.py

  • 方式二:数据表录入

5. 后台进程创建任务

celery -A django_celery_demo beat -l info --scheduler django_celery_beat.schedulers:DatabaseScheduler

6. 启动worker执行任务

celery -A django_celery_demo worker -l INFO  

官方参考:http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html#using-celery-with-django

python celery任务分发的更多相关文章

  1. python celery + redis

    redis http://debugo.com/python-redis celery http://docs.jinkan.org/docs/celery/getting-started/intro ...

  2. python celery多worker、多队列、定时任务

    python celery多worker.多队列.定时任务  

  3. python—Celery异步分布式

    python—Celery异步分布式 Celery  是一个python开发的异步分布式任务调度模块,是一个消息传输的中间件,可以理解为一个邮箱,每当应用程序调用celery的异步任务时,会向brok ...

  4. Python 库打包分发、setup.py 编写、混合 C 扩展打包的简易指南(转载)

    转载自:http://blog.konghy.cn/2018/04/29/setup-dot-py/ Python 有非常丰富的第三方库可以使用,很多开发者会向 pypi 上提交自己的 Python ...

  5. Python Celery队列

    Celery队列简介: Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务,就可以考虑使用celery. 使用 ...

  6. python BitTornado P2P分发大文件

    P2P分发大文件思路 1.将软件包生成种子文件 2.通过saltstack将种子文件分发至每台服务器 3.每台服务器进行种子下载 推荐使用Twitter开源的murder.Twitter用它来分发大文 ...

  7. python celery 多work多队列

    1.Celery模块调用 既然celery是一个分布式的任务调度模块,那么celery是如何和分布式挂钩呢,celery可以支持多台不通的计算机执行不同的任务或者相同的任务. 如果要说celery的分 ...

  8. Python—Celery 框架使用

    一.Celery 核心模块 1. Brokers brokers 中文意思为中间人,在这里就是指任务队列本身,接收生产者发来的消息即Task,将任务存入队列.任务的消费者是Worker,Brokers ...

  9. python celery 异步学习

    1.运行redis 2.安装celery:pip install celery[redis] 3.vim task.py import time from celery import Celery b ...

随机推荐

  1. JRE与JDK简介

    如何进行 Java 开发: JRE: JDK:

  2. python之zip打包

    import zipfile # 压缩 z = zipfile.ZipFile('z.zip', 'w') z.write('xo.xml') z.write('xxxoo.xml') z.close ...

  3. SQLserver查询库中包含某个字段的表

    select [name] from [TPMS_PRD].[dbo].sysobjects where id in(select id from [TPMS_PRD].[dbo].syscolumn ...

  4. SpringCloud(1)服务注册与发现Eureka

    1.创建1个空白的工程 2.创建2个model工程 一个module(即SpringBoot)工程作为服务注册中心,即Eureka Server,另一个作为Eureka Client. Eureka ...

  5. OCR技术浅析-无代码篇(1)

    图像识别中最贴近我们生活的可能就是 OCR 技术了. OCR 的定义:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打 ...

  6. day4(分支结构,循环结构,for循环,九九乘法表)

    一:复习 ''' 1.变量名命名规范 -- 1.只能由数字.字母 及 _ 组成 -- 2.不能以数字开头 -- 3.不能与系统关键字重名 -- 4._开头有特殊含义 -- 5.__开头__结尾的变量, ...

  7. Cards and Joy CodeForces - 999F (贪心+set)

    There are nn players sitting at the card table. Each player has a favorite number. The favorite numb ...

  8. nginx 编译参数详解(运维必看--转)

    nginx参数: –prefix= 指向安装目录 –sbin-path 指向(执行)程序文件(nginx) –conf-path= 指向配置文件(nginx.conf) –error-log-path ...

  9. Python中的可视化神器:pyecharts

    pyecharts是一款将python与echarts结合的强大的数据可视化工具,本文将为你阐述pyecharts的使用细则 前言 我们都知道python上的一款可视化工具matplotlib,而前些 ...

  10. BEX5下增加sessionStorage监听器实现页面间数据刷新

    场景: A页面修改了数据,希望B页面能进行及时的同步前端数据,但是假如当A页面修改保存后,去获得B页面的model对象,会增加开发的难度,同时A页面也不能重复利用:假如在B页面的激活事件里面写刷新代码 ...