传送门

题目涉及按位与以及按位或运算,所以可以拆位考虑,枚举某个二进制位,然后某个位置如果那个数的第\(i\)位是\(0\)就放\(0\),否则放\(1\),这一位的贡献就是位运算后值为\(1\)的子矩阵个数\(*2^i\).对于与运算,权值为\(1\)的矩阵为全\(1\)矩阵;对于或运算,权值为\(1\)的矩阵为含有\(1\)的矩阵,可以看成是总个数-全\(0\)矩阵个数,然后全\(0\)和全\(1\)矩阵个数可以单调栈求得

#include<bits/stdc++.h>
#define LL long long
#define db long double
#define il inline using namespace std;
const int N=1e3+10,mod=1e9+7;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,a[N][N],a1,a2,sm,b[N][N],c[N][N],st[N],tp; int main()
{
n=rd();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
a[i][j]=rd();
sm=(sm+1ll*(n-i+1)*(n-j+1)%mod)%mod;
}
for(int h=30;~h;--h)
{
bool o=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
int x=a[i][j]>>h&1;
o|=x;
b[i][j]=x?b[i-1][j]+1:0,c[i][j]=!x?c[i-1][j]+1:0;
}
if(!o) continue;
int cn=0,na;
for(int i=1;i<=n;++i)
{
tp=0,na=0;
for(int j=1;j<=n;++j)
{
while(tp&&b[i][st[tp]]>b[i][j]) na=(na-1ll*(st[tp]-st[tp-1])*b[i][st[tp]]%mod+mod)%mod,--tp;
st[++tp]=j,na=(na+1ll*(st[tp]-st[tp-1])*b[i][st[tp]]%mod)%mod;
cn=(cn+na)%mod;
}
}
a1=(a1+(1ll<<h)*cn%mod)%mod;
cn=0;
for(int i=1;i<=n;++i)
{
tp=0,na=0;
for(int j=1;j<=n;++j)
{
while(tp&&c[i][st[tp]]>c[i][j]) na=(na-1ll*(st[tp]-st[tp-1])*c[i][st[tp]]%mod+mod)%mod,--tp;
st[++tp]=j,na=(na+1ll*(st[tp]-st[tp-1])*c[i][st[tp]]%mod)%mod;
cn=(cn+na)%mod;
}
}
a2=(a2+(1ll<<h)*(1ll*sm-cn+mod)%mod)%mod;
}
printf("%d %d\n",a1,a2);
return 0;
}

luogu P5300 [GXOI/GZOI2019]与或和的更多相关文章

  1. 【题解】Luogu P5300 [GXOI/GZOI2019]与或和

    原题传送门 我们珂以拆位,拆成一个个0/1矩阵 贡献珂以用全0,全1的子矩阵的个数来计算 全0,全1的子矩阵的个数珂以用悬线法/单调栈解决 #include <bits/stdc++.h> ...

  2. P5300 [GXOI/GZOI2019]与或和

    题目地址:P5300 [GXOI/GZOI2019]与或和 考虑按位计算贡献 对于 AND 运算,只有全 \(1\) 子矩阵才会有贡献 对于 OR 运算,所以非全 \(0\) 子矩阵均有贡献 如果求一 ...

  3. luogu P5305 [GXOI/GZOI2019]旧词

    传送门 先考虑\(k=1\),一个点的深度就是到根节点的路径上的点的个数,所以\(lca(x,y)\)的深度就是\(x\)和\(y\)到根路径的交集路径上的点的个数,那么对于一个询问,我们可以对每个点 ...

  4. luogu P5304 [GXOI/GZOI2019]旅行者

    传送门 所以这个\(5s\)是SMG 暴力是枚举每一个点跑最短路,然后有一个很拿衣服幼稚的想法,就是把所有给出的关键点当出发点,都丢到队列里,求最短路的时候如果当前点\(x\)某个相邻的点\(y\)是 ...

  5. luogu P5303 [GXOI/GZOI2019]逼死强迫症

    传送门 只有两行,考虑递推,设\(f_i\)为没有那两个\(1*1\)的,前\(i\)列的方案,可以发现一次可以放一个竖的或两个横的,也就是\(f_i=f_{i-1}+f_{i-2}\) 再设\(g_ ...

  6. luogu P5302 [GXOI/GZOI2019]特技飞行

    传送门 强行二合一可还行 首先\(c\)的贡献是不会变的,先考虑求出多少交点被矩形覆盖,交点的话可以按左端点纵坐标从下到上顺序枚举一条线段,然后维护右端点纵坐标的set,把之前处理过线段的右端点放进s ...

  7. luogu P5301 [GXOI/GZOI2019]宝牌一大堆

    传送门 wdnm又是打麻将 首先国土无双可以直接枚举哪种牌用了\(2\)次算贡献,然后\(7\)个对子可以把每种牌的对子贡献排序,取最大的\(7\)个,剩下的牌直接暴力枚举是不行的,考虑dp,设\(f ...

  8. 【题解】Luogu P5301 [GXOI/GZOI2019]宝牌一大堆

    原题传送门 首先先要学会麻将,然后会发现就是一个暴力dp,分三种情况考虑: 1.非七对子国士无双,设\(dp_{i,j,k,a,b}\)表示看到了第\(i\)种牌,一共有\(j\)个\(i-1\)开头 ...

  9. 【题解】Luogu P5304 [GXOI/GZOI2019]旅行者

    原题传送门 题意:给你k个点,让你求两两最短路之间的最小值 我们考虑二进制拆分,使得每两个点都有机会分在不同的组\((A:0,B:1)\)中,从源点\(S\)向\(A/B\)中的点连边权为0的边,从\ ...

随机推荐

  1. jquery-插件iCheck 使用

    这是一个兼容多种浏览器的插件 官网:http://icheck.fronteed.com/ 官方给出了很多的例子,我说一个使用的问题. 使用的时候,要放到window..load的外部. 页面html ...

  2. H5页面长按导致app崩溃问题解决

    每天学习一点点 编程PDF电子书.视频教程免费下载:http://www.shitanlife.com/code 最近用H5页面做了个安卓的项目,但是在H5页面中长按文字内容,会导致APP崩溃掉... ...

  3. 多节点,多线程下发订单,使用zookeeper分布式锁机制保证订单正确接入oms系统

    假设订单下发, 采用单机每分钟从订单OrderEntry接口表中抓100单, 接入订单oms系统中. 由于双十一期间, 订单量激增, 导致订单单机每分钟100单造成, 订单积压. 所以采用多节点多线程 ...

  4. C# 对文本文件的几种读写方法总结

    计算机在最初只支持ASCII编码,但是后来为了支持其他语言中的字符(比如汉字)以及一些特殊字符(比如€),就引入了Unicode字符集.基于Unicode字符集的编码方式有很多,比如UTF-7.UTF ...

  5. 【Atcoder Grand Contest 011 F】Train Service Planning

    题意:给\(n+1\)个站\(0,\dots,n\),连续的两站\(i-1\)和\(i\)之间有一个距离\(A_i\),其是单行(\(B_i=1\))或双行(\(B_i=2\)),单行线不能同时有两辆 ...

  6. Linux和Uboot下eMMC boot分区读写

    关键词:eMMC boot.PARTITION_CONFIG.force_ro等. 1. eMMC的分区 大部分eMMC都有类似如下的分区,其中BOOT.RPMB和UDA一般是默认存在的,gpp分区需 ...

  7. (hdu 6024) Building Shops

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6024 Problem Description HDU’s n classrooms are on a ...

  8. Flask中使用数据库连接池 DBUtils ——(4)

    DBUtils是Python的一个用于实现数据库连接池的模块. 此连接池有两种连接模式: 模式一:为每个线程创建一个连接,线程即使调用了close方法,也不会关闭,只是把连接重新放到连接池,供自己线程 ...

  9. 如何给框架添加API接口日志

    前言 用的公司的框架,是MVC框架,看了下里面的日志基类,是操作日志,对增删改进行记录, 夸张的是一张业务的数据表 需要一张专门的日志表进行记录, 就是说你写个更新,添加的方法都必须写一遍操作日志,代 ...

  10. OpenCV__elemSize

    elemSize 矩阵一个元素占用的字节数,例如:type是CV_16SC3,那么elemSize = 3 * 16 / 8 = 6 bytes elemSize1 矩阵元素一个通道占用的字节数,例如 ...