pytorch简介
诞生
1.2017年1月,Facebook人工智能研究院(FAIR)团队在GitHub上开源了pyTorch,并迅速占领GitHub热度榜榜首。
常见深度学习框架简介
Theano
1、Theano最初诞生于蒙特利尔大学LISA实验室,于2008年开始开发,是第一个有较大影响力的Python深度学习框架;Theano是一个Python库,可用于定义、优化和计算数学表达式,特别是多维数组(numpy.ndarray),在解决包含大量数据的问题时,使用Theano编程可实现比手写C语句更快的速度,二通过GPU加速,Theano甚至比基于CPU计算的C语言快上好几个数量级;
2、不足:调试困难,构建图慢;
3、奠定:2017年9月28日发布"Theano is Dead",退出历史舞台,但是奠定了深度学习框架的设计方向——以计算图为框架的核心,采用GPU加速计算。
TensorFlow
1、2015年11月10日,Google宣布退出全新的机器学习开源工具TensorFlow,TensorFlow最初是由Google机器智能研究部门的Google Brain团队开发,基于Google 2011年开发的深度学习基础架构DistBelief构建起来的;
2、应用:机器学习和深度神经网络,是一个非常基础的系统,因此可以应用于众多领域;
3、不足:
过于复杂的系统设计,TensorFlow在GitHub代码仓库的总代码量超过100万行;
频繁变动的接口;
接口设计过于晦涩难懂;
文档混乱脱节;
4、点评:不完美但最流行的深度学习框架,社区强大,适合生产环境。
Caffe/Caffe2
1、Caffe的全称Convolutional Architecture for Fast Feature Embedding,他是一个清晰、高效的深度学习框架,核心语言是C++,支持命令行、Python和MATLAB接口,可以在CPU上运行也可以在GPU上运行;
2、Caffe的优点是简介快捷,缺点是缺少灵活性,不同于Keras由于太多封装导致灵活性丧失,Caffe灵活性的缺失主要是因为它的设计;
3、Caffe的作者从加州伯克利分校毕业后加入了Google,参与过TensorFlow的开发,后来离开Google加入FAIR,担任工程主管,并开发了Caffe2;Caffe2是一个兼具表现力、速度和模块性的开源深度学习框架;设计追求轻量级,强调便携性;
4、点评:文档不够完善,但性能优异,几乎全平台支持(Caffe2),适合生产环境。
CNTK
1、2015年8月,微软公司在CodePlex上宣布由微软研究院开发的计算网络工具集CNTK将开源,5个月后,2016年1月25日,微软公司在他们的GitHub仓库上正式开源了CNTK;
2、CNTK性能比Caffe、Theano、TensorFlow等主流工具要强,CNTK支持CPU和GPU模式,和TensorFlow/Theano一样,它把神经网络描述成一个计算图的结构,叶子结点代表输入或者网络参数,其他结点代表计算步骤;
3、社区不够活跃,但是性能突出,擅长语音方面的相关研究。
pytorch
简洁:pytorch的设计追求最少的封装,尽量避免重复造轮子,pytorch的设计遵循tensor->variable(autograd)->nn.Module三个由低到高的抽象层次,分别代表高维数组(张量)、自动求导(变量)和神经网络(层/模块),这三个抽象之间联系紧密,可以同时进行修改和操作;
速度:pytorch的灵活性不以速度为代价;
易用:pytorch是所有框架中面向对象设计的最优雅的一个;
活跃的社区:pytorch提供了完成的文档,循序渐进的指南,作者亲自维护的论坛(https://discuss.pytorch.org/)供用户交流和求。
2018-10-04 21:59:38
pytorch简介的更多相关文章
- [PyTorch 学习笔记] 1.1 PyTorch 简介与安装
PyTorch 的诞生 2017 年 1 月,FAIR(Facebook AI Research)发布了 PyTorch.PyTorch 是在 Torch 基础上用 python 语言重新打造的一款深 ...
- Pytorch快速入门及在线体验
本文搭配了Pytorch在线环境,可以直接在线体验. Pytorch是Facebook 的 AI 研究团队发布了一个基于 Python的科学计算包,旨在服务两类场合: 1.替代numpy发挥GPU潜能 ...
- pytorch 入门指南
两类深度学习框架的优缺点 动态图(PyTorch) 计算图的进行与代码的运行时同时进行的. 静态图(Tensorflow <2.0) 自建命名体系 自建时序控制 难以介入 使用深度学习框架的优点 ...
- PyTorch专栏(八):微调基于torchvision 0.3的目标检测模型
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 P ...
- PyTorch专栏(六): 混合前端的seq2seq模型部署
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一 ...
- PyTorch专栏(五):迁移学习
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 P ...
- PyTorch专栏(二)
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60min入门 PyTorch 入门 PyTorch 自动微分 PyTorch 神经 ...
- PyTorch专栏(一)
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60min入门 PyTorch 入门 PyTorch 自动微分 PyTorch 神经 ...
- PyTorch专栏开篇
目前研究人员正在使用的深度学习框架不尽相同,有 TensorFlow .PyTorch.Keras等.这些深度学习框架被应用于计算机视觉.语音识别.自然语言处理与生物信息学等领域,并获取了极好的效果. ...
随机推荐
- 老男孩Python全栈学习 S9 日常作业 003
1.有变量name = "aleX leNb" 完成如下操作: # 移除 name 变量对应的值两边的空格,并输出处理结果 # 移除name变量左边的"al"并 ...
- nginx缓存设置(expires)
一.expires功能说明 nginx缓存的设置可以提高网站性能,对于网站的图片,尤其是新闻网站,图片一旦发布,改动的可能是非常小的,为了减小对服务器请求的压力,提高用户浏览速度,我们可以通过设置ng ...
- [物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfr ...
- 淘宝网站上的 HTTP 缓存问题两则
在阅读本文前推荐你先阅读我的前两篇文章< 扼杀 304,Cache-Control: immutable>和<关于缓存和 Chrome 的“新版刷新”>:下面要说的两个问题是在 ...
- C++中数组作为形参进行传递(转)
有两种传递方法,一种是function(int a[]); 另一种是function(int *a) 这两种两种方法在函数中对数组参数的修改都会影响到实参本身的值! 对于第一种,根据之前所学,形参是实 ...
- APPLE-SA-2019-3-25-4 Safari 12.1
APPLE-SA-2019-3-25-4 Safari 12.1 Safari 12.1 is now available and addresses the following: Safari Re ...
- Pytorch里的CrossEntropyLoss详解
在使用Pytorch时经常碰见这些函数cross_entropy,CrossEntropyLoss, log_softmax, softmax.看得我头大,所以整理本文以备日后查阅. 首先要知道上面提 ...
- Find K Closest Elements
Given a sorted array, two integers k and x, find the k closest elements to x in the array. The resul ...
- css之字体的引用
font-family 属性设置文本的字体系列. font-family 属性应该设置几个字体名称作为一种"后备"机制,如果浏览器不支持第一种字体,他将尝试下一种字体. 注意: 如 ...
- Windows Internals 笔记——线程
1.进程有两个组成部分,一个进程内核对象和一个地址空间.线程也有两个组成部分: 一个是线程的内核对象,操作系统用它管理线程.系统还用内核对象来存放线程统计信息的地方. 一个线程栈,用于维护线程执行时所 ...