pytorch简介
诞生
1.2017年1月,Facebook人工智能研究院(FAIR)团队在GitHub上开源了pyTorch,并迅速占领GitHub热度榜榜首。
常见深度学习框架简介
Theano
1、Theano最初诞生于蒙特利尔大学LISA实验室,于2008年开始开发,是第一个有较大影响力的Python深度学习框架;Theano是一个Python库,可用于定义、优化和计算数学表达式,特别是多维数组(numpy.ndarray),在解决包含大量数据的问题时,使用Theano编程可实现比手写C语句更快的速度,二通过GPU加速,Theano甚至比基于CPU计算的C语言快上好几个数量级;
2、不足:调试困难,构建图慢;
3、奠定:2017年9月28日发布"Theano is Dead",退出历史舞台,但是奠定了深度学习框架的设计方向——以计算图为框架的核心,采用GPU加速计算。
TensorFlow
1、2015年11月10日,Google宣布退出全新的机器学习开源工具TensorFlow,TensorFlow最初是由Google机器智能研究部门的Google Brain团队开发,基于Google 2011年开发的深度学习基础架构DistBelief构建起来的;
2、应用:机器学习和深度神经网络,是一个非常基础的系统,因此可以应用于众多领域;
3、不足:
过于复杂的系统设计,TensorFlow在GitHub代码仓库的总代码量超过100万行;
频繁变动的接口;
接口设计过于晦涩难懂;
文档混乱脱节;
4、点评:不完美但最流行的深度学习框架,社区强大,适合生产环境。
Caffe/Caffe2
1、Caffe的全称Convolutional Architecture for Fast Feature Embedding,他是一个清晰、高效的深度学习框架,核心语言是C++,支持命令行、Python和MATLAB接口,可以在CPU上运行也可以在GPU上运行;
2、Caffe的优点是简介快捷,缺点是缺少灵活性,不同于Keras由于太多封装导致灵活性丧失,Caffe灵活性的缺失主要是因为它的设计;
3、Caffe的作者从加州伯克利分校毕业后加入了Google,参与过TensorFlow的开发,后来离开Google加入FAIR,担任工程主管,并开发了Caffe2;Caffe2是一个兼具表现力、速度和模块性的开源深度学习框架;设计追求轻量级,强调便携性;
4、点评:文档不够完善,但性能优异,几乎全平台支持(Caffe2),适合生产环境。
CNTK
1、2015年8月,微软公司在CodePlex上宣布由微软研究院开发的计算网络工具集CNTK将开源,5个月后,2016年1月25日,微软公司在他们的GitHub仓库上正式开源了CNTK;
2、CNTK性能比Caffe、Theano、TensorFlow等主流工具要强,CNTK支持CPU和GPU模式,和TensorFlow/Theano一样,它把神经网络描述成一个计算图的结构,叶子结点代表输入或者网络参数,其他结点代表计算步骤;
3、社区不够活跃,但是性能突出,擅长语音方面的相关研究。
pytorch
简洁:pytorch的设计追求最少的封装,尽量避免重复造轮子,pytorch的设计遵循tensor->variable(autograd)->nn.Module三个由低到高的抽象层次,分别代表高维数组(张量)、自动求导(变量)和神经网络(层/模块),这三个抽象之间联系紧密,可以同时进行修改和操作;
速度:pytorch的灵活性不以速度为代价;
易用:pytorch是所有框架中面向对象设计的最优雅的一个;
活跃的社区:pytorch提供了完成的文档,循序渐进的指南,作者亲自维护的论坛(https://discuss.pytorch.org/)供用户交流和求。
2018-10-04 21:59:38
pytorch简介的更多相关文章
- [PyTorch 学习笔记] 1.1 PyTorch 简介与安装
PyTorch 的诞生 2017 年 1 月,FAIR(Facebook AI Research)发布了 PyTorch.PyTorch 是在 Torch 基础上用 python 语言重新打造的一款深 ...
- Pytorch快速入门及在线体验
本文搭配了Pytorch在线环境,可以直接在线体验. Pytorch是Facebook 的 AI 研究团队发布了一个基于 Python的科学计算包,旨在服务两类场合: 1.替代numpy发挥GPU潜能 ...
- pytorch 入门指南
两类深度学习框架的优缺点 动态图(PyTorch) 计算图的进行与代码的运行时同时进行的. 静态图(Tensorflow <2.0) 自建命名体系 自建时序控制 难以介入 使用深度学习框架的优点 ...
- PyTorch专栏(八):微调基于torchvision 0.3的目标检测模型
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 P ...
- PyTorch专栏(六): 混合前端的seq2seq模型部署
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一 ...
- PyTorch专栏(五):迁移学习
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 P ...
- PyTorch专栏(二)
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60min入门 PyTorch 入门 PyTorch 自动微分 PyTorch 神经 ...
- PyTorch专栏(一)
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60min入门 PyTorch 入门 PyTorch 自动微分 PyTorch 神经 ...
- PyTorch专栏开篇
目前研究人员正在使用的深度学习框架不尽相同,有 TensorFlow .PyTorch.Keras等.这些深度学习框架被应用于计算机视觉.语音识别.自然语言处理与生物信息学等领域,并获取了极好的效果. ...
随机推荐
- Pandas系列(六)-时间序列详解
内容目录 1. 基础概述 2. 转换时间戳 3. 生成时间戳范围 4. DatetimeIndex 5. DateOffset对象 6. 与时间序列相关的方法 6.1 移动 6.2 频率转换 6.3 ...
- 分布式监控系统开发【day38】:监控trigger表结构设计(一)
一.需求讨论 1.zabbix触发器的模板截图 1.zabbix2.4.7 2.zabbix3.0 2.模板与触发器关联的好处 好处就是可以批量处理,比如我说我有1000机器都要监控cpu.内存.IO ...
- SpringCloud笔记三:Eureka服务注册与发现
目录 什么是Eureka? Eureka注册的三大步 第一步,引用Maven 第二步,配置yml 第三步,开启Eureka注解 新建Eureka子项目 把provider子项目变成服务端 Eureka ...
- Java WebService接口生成和调用 图文详解>【转】【待调整】
webservice简介: Web Service技术, 能使得运行在不同机器上的不同应用无须借助附加的.专门的第三方软件或硬件, 就可相互交换数据或集成.依据Web Service规范实施的应用之间 ...
- Java IO流操作汇总: inputStream 和 outputStream【转】
我们在进行Android java 开发的时候,经常会遇到各种IO流操作.IO流操作一般分为两类:字符流和字节流.以“Reader”结尾都是字符流,操作的都是字符型的数据:以“Stream”结尾的都是 ...
- SPFA+SLF+LLL
关于SLF优化 朴素SPFA使用常规队列(FIFO)更新距离,并没有考虑优化出队顺序(dis值小的优先出队)可以在一开始就把各个点的dis值限值小,从而避免大量的松弛操作,从而提高效率.这就是SLF( ...
- UIWebView代码注入时机与姿势
一个奇怪的业务场景,引发的胡乱思考 问题其实不难解决,只是顺着这个问题,发散出了一些有意思的东西 本文旨在讨论UIWebView,WKWebView有自己的机制,不用这么费劲 我们的业务最大的最重要的 ...
- 对评分矩阵进行分解,SVD与LSI
摘自 推荐系统 https://www.cnblogs.com/lzllovesyl/p/5243370.html 一.SVD奇异值分解 1.SVD简介 SVD(singular value deco ...
- UDP 单播、广播、多播
一.UDP广播 广播UDP与单播UDP的区别就是IP地址不同,广播使用广播地址255.255.255.255,将消息发送到在同一广播网络上的每个主机.值得强调的是:本地广播信息是不会被路由器转发.当然 ...
- Spring系列(二) Bean装配
创建应用对象之间协作关系的行为称为装配(wiring), 这也是DI的本质. Spring中装配Bean的方式 Spring提供了三种装配Bean的方式. 隐式的Bean发现机制和自动装配 Java ...