BZOJ 3653: 谈笑风生(离线, 长链剖分, 后缀和)
题意
给你一颗有 \(n\) 个点并且以 \(1\) 为根的树。共有 \(q\) 次询问,每次询问两个参数 \(p, k\) 。询问有多少对点 \((p, a, b)\) 满足 \(p,a,b\) 为三个不同的点,\(p, a\) 都为 \(b\) 的祖先,且 \(p\) 到 \(a\) 的距离不能超过 \(k\) 。
\(n\le 300000 , q\le 300000\) 不要求强制在线。
题解
令 \(dep[u]\) 为点 \(u\) 的深度,\(sz[u]\) 为 \(u\) 的子树大小(除去 \(u\) 本身)
首先我们考虑两种情况:
- \(a\) 为 \(p\) 的祖先,那么这部分贡献很好计算,就是 \(\min\{dep[p] - 1,k\} \times sz[u]\) 。
- \(a\) 在 \(p\) 的子树内,那么这部分贡献就是 \(\displaystyle \sum_{dis(p,a) \le k} sz[a]\) 。
我们现在只要考虑第二部分贡献怎么求。
不难发现,这些点的深度就是 \([dep[p], dep[p]+k]\) 这个范围内的。
那么我们可以对于每个点用个 主席树 来存储这些信息,可以在线回答询问。
那么离线的话,可以考虑用 线段树合并 维护它每个子树的信息。
具体来说,这些都是对于每个 \(dep\) 维护它的 \(sz\) 的和,然后查区间和就行了。
然而这些时空复杂度都是 \(O(n \log n)\) ,其实还有更好的做法。
为什么我发现了呢qwq?
因为 fatesky 做这道题线段树合并做法的时候,Wearry 说可以 长链剖分 那就是 \(O(n)\) 的啦。
我们令 \(\displaystyle maxdep[u]=\max_{v \in child[u]} \{dep[v\}\) 也就是它子树中的最大深度。
具体来说,长链剖分就是把每个点儿子中 \(maxdep\) 最大的那个当做重儿子。重儿子与父亲连的边叫做重边。一连串重边不间断连到一起就叫做重链。
然后我们就有一条性质。
性质1 : 重链长度之和是 \(O(n)\) 的。
这个很显然啦,因为总共只有 \(O(n)\) 级别的边。
有了这个我们就可以解决一系列 关于深度的动态规划 问题了,对于这列问题常常都可以做到 \(O(n)\) 的复杂度。
具体操作就是,每次暴力继承重儿子的 \(dp\) 状态,然后轻儿子暴力合并上去。
不难发现这个复杂度是 \(O(\sum\) 重链长 \()\) \(= O(n)\) 的。
继承的时候常常需要移位,并且把当前节点贡献算入,并且这个 \(dp\) 需要动态空间才能实现。
对于这道题我们考虑维护一个后缀和,也就是对于 \(u\) 子树中的 \(v\) ,\(dep[v] \ge k\) 的所有 \(sz[v]\) 的和。
不难发现后缀和是很好合并的,这个的复杂度只需要 \(O(\min maxdep[v])\) 。
每次添加一个点 \(sz[u]\) 对于 \(dep[u]\) 的贡献只会对一个点的贡献产生影响,这个复杂度是 \(O(1)\) 的。
代码实现的话,就可以用一个 std :: vector ,按深度从大到小 ( \(maxdep[u] \to dep[u]\) )存储每个点的信息,因为这样最方便继承重儿子状态(每次加入状态只在整个 vector 末端添加一个元素)
其实可以动态开内存,顺着做,但我似乎学不来
常数似乎有点大,没比 \(O(n \log n)\) 快多少,vector 用多了... Wearry 到是优化了点常数到了 \(4000+ ms\) 。
话说这个很像原来 DOFY 讲过的那道 Dsu on Tree ?
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
using namespace std;
typedef long long ll;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("3653.in", "r", stdin);
freopen ("3653.out", "w", stdout);
#endif
}
const int N = 3e5 + 1e3;
struct Ask { int k, id; } ; vector<Ask> V[N];
vector<int> G[N]; int sz[N], maxdep[N], dep[N], sonmaxdep[N], son[N], rt[N];
vector<ll> sum[N]; int n, q; ll ans[N], Size = 0;
void Dfs_Init(int u, int fa = 0) {
maxdep[u] = dep[u] = dep[fa] + 1;
For (i, 0, G[u].size() - 1) {
register int v = G[u][i];
if (v ^ fa) Dfs_Init(v, u), chkmax(maxdep[u], maxdep[v]);
}
}
void Dfs(int u, int fa = 0) {
For (i, 0, G[u].size() - 1) {
int v = G[u][i];
if (v == fa) continue ;
Dfs(v, u); sz[u] += sz[v];
if (maxdep[v] > maxdep[son[u]]) son[u] = v;
}
rt[u] = rt[son[u]]; if (!rt[u]) rt[u] = ++ Size;
int len = (int)sum[rt[u]].size();
ll Last = len ? sum[rt[u]][len - 1] : 0;
sum[rt[u]].push_back(Last);
if (son[u]) {
For (i, 0, G[u].size() - 1) {
int v = G[u][i]; if (v == fa || v == son[u]) continue ;
For (j, 0, sum[rt[v]].size() - 1) {
int nowdep = (maxdep[son[u]] - maxdep[v]) + j;
sum[rt[u]][nowdep] += sum[rt[v]][j];
}
sum[rt[u]][len] += sum[rt[v]][sum[rt[v]].size() - 1];
}
}
For (i, 0, V[u].size() - 1) {
Ask now = V[u][i];
ans[now.id] = sum[rt[u]][len];
if (len > now.k) ans[now.id] -= sum[rt[u]][len - now.k - 1];
ans[now.id] += 1ll * min(dep[u] - 1, now.k) * sz[u];
}
sum[rt[u]][len] += sz[u]; ++ sz[u];
}
int main () {
File();
n = read(); q = read();
For (i, 1, n - 1) {
int u = read(), v = read();
G[u].push_back(v);
G[v].push_back(u);
}
For (i, 1, q) {
int p = read(), k = read();
V[p].push_back((Ask) {k, i});
}
Dfs_Init(1); Dfs(1);
For (i, 1, q)
printf ("%lld\n", ans[i]);
return 0;
}
BZOJ 3653: 谈笑风生(离线, 长链剖分, 后缀和)的更多相关文章
- 【BZOJ3653】谈笑风生(长链剖分)
[BZOJ3653]谈笑风生(长链剖分) 题面 BZOJ 洛谷 权限题啊.... 题解 首先根据题目给的条件,发现\(a,b\)都要是\(c\)的父亲. 所以这三个点是树上的一条深度单增的链. 因为\ ...
- 2019.01.19 bzoj3653: 谈笑风生(长链剖分优化dp)
传送门 长链剖分优化dpdpdp水题. 题意简述:给一棵树,mmm次询问,每次给一个点aaa和一个值kkk,询问满足如下条件的三元组(a,b,c)(a,b,c)(a,b,c)的个数. a,b是c的祖先 ...
- bzoj 3252: 攻略 -- 长链剖分+贪心
3252: 攻略 Time Limit: 10 Sec Memory Limit: 128 MB Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神 ...
- bzoj 3252 攻略 长链剖分思想+贪心
攻略 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 889 Solved: 423[Submit][Status][Discuss] Descrip ...
- BZOJ 3626 LCA(离线+树链剖分)
首先注意到这样一个事实. 树上两个点(u,v)的LCA的深度,可以转化为先将u到根路径点权都加1,然后求v到根路径上的总点权值. 并且该题支持离线.那么我们可以把一个区间询问拆成两个前缀和形式的询问. ...
- P5384[Cnoi2019]雪松果树 (长链剖分)
题面 一棵以 1 1 1 为根的 N N N 个节点的有根树, Q Q Q 次询问,每次问一个点 u u u 的 k k k 级兄弟有多少个(第 k k k 代祖先的第 k k k 代孩子),如果没有 ...
- BZOJ.3653.谈笑风生(长链剖分/线段树合并/树状数组)
BZOJ 洛谷 \(Description\) 给定一棵树,每次询问给定\(p,k\),求满足\(p,a\)都是\(b\)的祖先,且\(p,a\)距离不超过\(k\)的三元组\(p,a,b\)个数. ...
- BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)
题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...
- BZOJ[3252]攻略(长链剖分)
BZOJ[3252]攻略 Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏.今天他得到了一款新游戏<XX半岛> ...
随机推荐
- 你真的了解PeopleSoft中的function和method方法嘛
谈下function和method在内嵌与外部传参的区别 1.内嵌函数(Internal Functions) 看下现在输出&x的话会返回什么值? 2.内嵌函数(Internal Functi ...
- ButterKnife注解式绑定控件
Butter Knife Android为控件设计的注解绑定库. github地址:https://github.com/JakeWharton/butterknife 添加依赖:(具体看github ...
- JIRA笔记(一):安装部署JIRA
(一) 说明 说明JIRA的安装及破解. 操作系统:WIN 10 数据库:Oracle 12C R2(这个版本的jira,atlassian建议的是 12C R1,不过R2也能用,其他版本不清 ...
- MySQL常用命令汇总(偏向运维管理)
基础部分 1. select @@version; ##查询当前mysql的版本. 2. show variables like 'port';##查看mysql实例的端口. 3. show vari ...
- httpservlet里单纯分页
@Override protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletExcep ...
- Docker 架构(二)【转】
Docker 使用客户端-服务器 (C/S) 架构模式,使用远程API来管理和创建Docker容器. Docker 容器通过 Docker 镜像来创建. 容器与镜像的关系类似于面向对象编程中的对象与类 ...
- errno 的使用
error是一个包含在<errno.h>中的预定义的外部int变量,用于表示最近一个函数调用是否产生了错误.若为0,则无错误,其它值均表示一类错误. perror()和strerror() ...
- Bootstrap -- 网格系统、排版样式类、 <blockquote>、 <abbr> 元素
Bootstrap -- 网格系统.排版样式类. <blockquote>. <abbr> 元素 1. Bootstrap 提供了一套响应式.移动设备优先的流式网格系统,随着屏 ...
- docker容器日志收集方案(方案N,其他中间件传输方案)
由于docker虚拟化的特殊性导致日志收集方案的多样性和复杂性下面接收几个可能的方案 这个方案各大公司都在用只不过传输方式大同小异 中间件使用kafka是肯定的,kafka的积压与吞吐能力相当强悍 ...
- 【实战代码】PHP实现读取一个1G的文件大小
本文地址:http://www.cnblogs.com/aiweixiao/p/7535351.html 欢迎关注我的微信公众号哈 “ 程序员的文娱情怀” http://t.cn/RotyZtu [背 ...