c/c++再学习:查找算法了解
1.顺序查找
说明:顺序查找适合于存储结构为顺序存储或链接存储的线性表。
基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。
复杂度分析:
查找成功时的平均查找长度为:(假设每个数据元素的概率相等) ASL = 1/n(1+2+3+…+n) = (n+1)/2 ;
当查找不成功时,需要n+1次比较,时间复杂度为O(n);
所以,顺序查找的时间复杂度为O(n)。
int sequence_search(vector<int>& nums, int val)
{
int len = nums.size();
for (int i = 0; i < len; i++)
{
if (nums[i] == val)
{
return i;
}
}
return -1;
}
2.二分查找
说明:元素必须是有序的,如果是无序的则要先进行排序操作。
基本思想:也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。
复杂度分析
最坏情况下,关键词比较次数为log2(n+1),且期望时间复杂度为O(log2n);
int binary_search_recurse(vector<int>&nums, int val, int low, int high)
{
if (low == high)
{
if (nums[low] != val)
{
return -1;
}
else
{
return low;
}
}
int mid = low + (high - low) / 2;
if (nums[mid] == val) {
return mid;
}
else if (nums[mid] > val) {
return binary_search_recurse(nums, val, low, mid - 1);
}
else if (nums[mid] < val) {
return binary_search_recurse(nums, val, mid + 1, high);
}
return -1;
}
int binary_search(vector<int>&nums, int val)
{
quick_sort(nums, 0, nums.size() - 1);
return binary_search_recurse(nums, val, 0, nums.size() - 1);
}
3.插值查找
在介绍插值查找之前,首先考虑一个新问题,为什么上述算法一定要是折半,而不是折四分之一或者折更多呢?打个比方,在英文字典里面查“apple”,你下意识翻开字典是翻前面的书页还是后面的书页呢?如果再让你查“zoo”,你又怎么查?很显然,这里你绝对不会是从中间开始查起,而是有一定目的的往前或往后翻。同样的,比如要在取值范围1 ~ 10000 之间 100 个元素从小到大均匀分布的数组中查找5, 我们自然会考虑从数组下标较小的开始查找。
经过以上分析,折半查找这种查找方式,不是自适应的(也就是说是傻瓜式的)。二分查找中查找点计算如下:
mid=(low+high)/2, 即mid=low+1/2(high-low);
通过类比,我们可以将查找的点改进为如下:
mid=low+(key-a[low])/(a[high]-a[low])(high-low)。
也就是将上述的比例参数1/2改进为自适应的,根据关键字在整个有序表中所处的位置,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。
基本思想
基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。
对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
复杂度分析
查找成功或者失败的时间复杂度均为O(log2(log2n))
int insert_search_recurse(vector<int>&nums, int val, int low, int high)
{
if (low == high)
{
if (nums[low] != val)
{
return -1;
}
else
{
return low;
}
}
int mid = low + (high - low) * (val - nums[low]) / (nums[high] - nums[low]);
if (nums[mid] == val) {
return mid;
}
else if (nums[mid] > val) {
return insert_search_recurse(nums, val, low, mid - 1);
}
else if (nums[mid] < val) {
return insert_search_recurse(nums, val, mid + 1, high);
}
return -1;
}
int insert_search(vector<int>&nums, int val)
{
quick_sort(nums, 0, nums.size() - 1);
return binary_search_recurse(nums, val, 0, nums.size() - 1);
}
c/c++再学习:查找算法了解的更多相关文章
- C语言再学习part3—算法
君子远庖厨,万物皆备于我.—孟子 这篇文章主要总结程序的主要要素,以及程序的构成是什么样子的.最后说说我学到的一种奇特的表示算法的方式—伪代码. 让我们开始吧! 一个程序应该包括以下两个主要要素: 1 ...
- Java学习之二分查找算法
好久没写算法了.只记得递归方法..结果测试下爆栈了. 思路就是取范围的中间点,判断是不是要找的值,是就输出,不是就与范围的两个临界值比较大小,不断更新临界值直到找到为止,给定的集合一定是有序的. 自己 ...
- Python学习日记(十三) 递归函数和二分查找算法
什么是递归函数? 简单来说就是在一个函数中重复的调用自己本身的函数 递归函数在调用的时候会不断的开内存的空间直到程序结束或递归到一个次数时会报错 计算可递归次数: i = 0 def func(): ...
- Knowledge_SPA——精研查找算法
首先保证这一篇分析查找算法的文章,气质与大部分搜索引擎搜索到的文章不同,主要体现在代码上面,会更加高级,会结合到很多之前研究过的内容,例如设计模式,泛型等.这也与我的上一篇面向程序员编程--精研排序算 ...
- 最近邻查找算法kd-tree
http://blog.csdn.net/pipisorry/article/details/52186307 )选择特征(坐标轴)的方法 (2)以该特征的哪一个为界 (3)达到什么条件算法结束. ...
- ui2code中的深度学习+传统算法应用
背景 在之前的文章中,我们已经提到过团队在UI自动化这方面的尝试,我们的目标是实现基于 单一图片到代码 的转换,在这个过程不可避免会遇到一个问题,就是为了从单一图片中提取出足够的有意义的结构信息,我们 ...
- Python递归函数,二分查找算法
目录 一.初始递归 二.递归示例讲解 二分查找算法 一.初始递归 递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但 ...
- 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树
某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...
- Java实现的二分查找算法
二分查找又称折半查找,它是一种效率较高的查找方法. 折半查找的算法思想是将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小 于该中点 ...
随机推荐
- MFC:位图和图标的设置
一. 图标的设置 加载图标 API函数:AfxGetApp()->LoadIconW(); 2. 显示图标 API函数:SetClassLong(); 函数原型:DWORD WINAPI S ...
- 解决php -v查看到版本与phpinfo()版本不一致问题
安装p7后发现phpinfo的版本是7.2.12,而php -v查看的却是5.4.16 应该是php.ini的配置文件有问题. 查看文件,有两个 查看cli执行的文件是哪一个? 再查看phpinfo用 ...
- 细说Cookie--转
Cookie虽然是个很简单的东西,但它又是WEB开发中一个很重要的客户端数据来源,而且它可以实现扩展性很好的会话状态, 所以我认为每个WEB开发人员都有必要对它有个清晰的认识.本文将对Cookie这个 ...
- vue路由信息对象
一个路由信息对象表示当前激活的路由的状态信息,每次成功的导航后都会产生一个新的对象. path字符串,对应当前路由的路径 params对象,包含动态路由参数 query对象,URL查询参数 hash字 ...
- QPS从0到4000请求每秒,谈达达后台架构演化之路
达达是全国领先的最后三公里物流配送平台. 达达的业务模式与滴滴以及Uber很相似,以众包的方式利用社会闲散人力资源,解决O2O最后三公里即时性配送难题(目前达达已经与京东到家合并). 达达业务主要包含 ...
- PMP知识点(三)——挣值计算汇总表
在新标签页打开. 附参考图 资料地址:http://pan.baidu.com/s/1bMNroq
- 使用onblur+alert+focus导致的死循环解决
<input type="text" id="loginName" onblur="checkLoginName()"/> fu ...
- Swift 4 关于Darwin这个Module
大家在做app或者framework的时候经常会用到生成随机数的方法arc4random系列,或者取绝对值abs()等.所以我有一次好奇的想看看在Developer Document里 是怎么描述这些 ...
- APP数据的爬取
前言 App 的爬取相比 Web 端爬取更加容易,反爬虫能力没有那么强,而且数据大多是以 JSON形式传 输的,解析更加简单.在 Web 端,我们可以通过浏览器的开发者工具监听到各个网络请求和响应过程 ...
- Linux input系统数据上报流程【转】
转自:https://segmentfault.com/a/1190000017255939 作为鸡生蛋系列文章,这里主要关注Linux input系统,主要为触摸事件上报流程. 读该文章最好有对li ...