Roman Numerals 

The original system of writing numbers used by the early Romans was simple but cumbersome. Various letters were used to represent important numbers, and these were then strung together to represent other numbers with the values decreasing monotonically from left to right. The letters they used and the numbers that were represented are given in the following table.

I 1   V 5
X 10   L 50
C 100   D 500
M 1000      

Thus 1993 was written as MDCCCCLXXXXIII. This system was then superseded by a partially place-oriented system, whereby if the above rule of decreasing values was broken, it meant that the immediately preceding (lower) value was deemed to be `negative' and was subtracted from the higher (out of place) value. In this system 1993 was usually written as MCMXCIII. There is still some controversy as to which letters could precede which other letters, but for the purposes of this problem we will assume the following restrictions:

1.
A letter from the left column can never appear more than three times in a row, and there can never be more than one other occurrence of that letter.

2.
A letter from the right column can never appear more than once.

3.
Once a letter has been used in a `negative' position, all subsequent characters (apart from the one immediately following) may not be greater than that character.

Thus we could write MXMIII for 1993 or CCXCIV for 294, however we could not write ILV for 54, nor could we write LIL for 99. Note that 299 could be written as CCXCIX or CCIC

Given a Roman sum, we can either interpret it as such or as an encoding of an Arabic sum. Thus V+V=X could be interpreted as an ambiguous encoding of an Arabic sum with V  {1, 2, 3, 4} and X = 2 * V. Similarly, X+X=XX could be interpreted as a correct Roman sum but an impossible Arabic encoding (apart from the trivial encoding X = 0) and XX+XX=MXC as an incorrect Roman sum, but a valid encoding with M = 1, X = 9, and C = 8.

Write a program that will read in sums in Roman numerals and determine whether or not they are correct as Roman sums and also whether they are impossible, ambiguous or valid as Arabic encodings. Assume that zero will never appear on its own or as a leading digit, and that no two Roman numerals map onto the same Arabic digit.

Input

Input will consist of a series of lines, each line consisting of an apparent Roman sum, i.e. a valid Roman number, a plus sign (
+
), another valid Roman number, an equal sign (
=
) and another valid Roman number. No Roman number will contain more than 9 letters. The file will be terminated by a line consisting of a single 
#
.

Output

Output will consist of a series of lines, one for each line of the input, and each containing two words. The first word will be one of (
Correct, Incorrect
) depending on whether the Roman sum is or is not correct. The second word will be separated from the first by exactly one space and will be one of the set (impossible, ambiguous, valid) depending on the Arabic sum.

Sample input

V+V=X
X+X=XX
XX+XX=MXC
#

Sample output

Correct ambiguous
Correct impossible
Incorrect valid

题意:分两步,第一步判断输入的罗马数字运算结果对不对。第二步,如果每个字母可以用0-9代替,且不同字母不能重复,且有前导零不考虑。判断有一种还是多种还是没有能使得运算结果正确的答案。

思路:

#include <stdio.h>
#include <string.h> char c[105];
int v[777];
int vv[777];
int vis[777];
int visn[10];
int vvv[10];
int vvvn;
int judge2;
char num[3][11];
void tra() {
judge2 = 0;
vvvn = 0;
memset(vv, 0, sizeof(vv));
memset(vvv, 0, sizeof(vvv));
memset(vis, 0, sizeof(vis));
memset(visn, 0, sizeof(visn));
int nu = 0;
int nul = 0;
memset(num, 0, sizeof(num));
for (int i = 0 ; i <= strlen(c); i ++) {
if (c[i] == '+' || c[i] == '=' || c[i] == '\0') {
num[nul ++][nu] = '\0';
nu = 0;
continue;
}
if (vis[c[i]] == 0)
{
vis[c[i]] = 1;
vvv[vvvn ++] = c[i];
}
num[nul][nu ++] = c[i];
}
}
int judge1() {
int numm[3];
numm[0] = numm[1] = numm[2] = 0;
for (int k = 0; k < 3; k ++) {
for (int i = 0; i < strlen(num[k]); i ++) {
if (v[num[k][i + 1]] <= v[num[k][i]] || i == strlen(num[k]) - 1)
numm[k] += v[num[k][i]];
else
numm[k] -= v[num[k][i]];
}
}
if (numm[0] + numm[1] == numm[2])
return 1;
else
return 0;
} void dfs(int nn)
{
if (judge2 == 2)
return;
if (nn == vvvn) {
int numm[3];
numm[0] = numm[1] = numm[2] = 0;
for (int k = 0; k < 3; k ++) {
for (int j = 0; j < strlen(num[k]); j ++) {
numm[k] = numm[k] * 10 + vv[num[k][j]];
}
}
if (numm[0] + numm[1] == numm[2]) {
judge2 ++;
}
return;
}
for (int i = 0; i <= 9; i ++) {
if (!visn[i]) {
vv[vvv[nn]] = i;
int bo = 0;
if (!vv[vvv[nn]]) {
for (int j = 0; j < 3; j ++) {
if (num[j][0] == vvv[nn] && strlen(num[j]) > 1) {
bo = 1;
break;
}
}
}
if (bo)
continue;
visn[i] = 1;
dfs(nn + 1);
visn[i] = 0;
}
}
}
int main()
{
v['I'] = 1; v['V'] = 5; v['X'] = 10; v['L'] = 50;
v['C'] = 100; v['D'] = 500; v['M'] = 1000;
while (gets(c) != NULL && c[0] != '#') {
tra();
dfs(0);
if (judge1())
printf("Correct ");
else
printf("Incorrect ");
if (judge2 == 0)
printf("impossible\n");
if (judge2 == 1)
printf("valid\n");
if (judge2 == 2)
printf("ambiguous\n");
}
return 0;
}

第一步好处理。。把每个罗马数字转换为数字比较即可

第二步就是暴力。每个字母0-9暴力,如果遇到两种情况就可以直接结束。

UVA 185(暴力DFS)的更多相关文章

  1. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  2. Strange Country II 暴力dfs

    这题点的个数(<=50)有限, 所以可以纯暴力DFS去搜索 //#pragma comment(linker, "/STACK:16777216") //for c++ Co ...

  3. UVA129 暴力dfs,有许多值得学习的代码

    紫书195 题目大意:给一个困难的串,困难的串的定义就是里面没有重复的串. 思路:不需要重新对之前的串进行判重,只需要对当前的加入的字符进行改变即可. 因为是判断字典序第k个的字符串,所以要多一个全局 ...

  4. 2018杭电多校第五场1002(暴力DFS【数位】,剪枝)

    //never use translation#include<bits/stdc++.h>using namespace std;int k;char a[20];//储存每个数的数值i ...

  5. A. The Fault in Our Cubes 暴力dfs

    http://codeforces.com/gym/101257/problem/A 把它固定在(0,0, 0)到(2, 2, 2)上,每次都暴力dfs检查,不会超时的,因为规定在这个空间上,一不行, ...

  6. UVa 818Cutting Chains (暴力dfs+位运算+二进制法)

    题意:有 n 个圆环,其中有一些已经扣在一起了,现在要打开尽量少的环,使所有的环可以组成一条链. 析:刚开始看的时候,确实是不会啊....现在有点思路,但是还是差一点,方法也不够好,最后还是参考了网上 ...

  7. UVA 818 Cutting Chains 切断圆环链 (暴力dfs)

    题意就是给一张无向图,去掉某些结点,然后连成一条链,问最少去掉几个结点. n很小n<=15,所以直接枚举2^15个状态就行啦. 链的条件是1.无环,2.没有度大于2的点,3.把n个散链连起来需要 ...

  8. UVA 11754 (暴力+中国剩余定理)

    题目链接: http://www.bnuoj.com/v3/problem_show.php?pid=20172 题目大意:有C个模方程,每个方程可能有k余数,求最小的S个解. 解题思路: 看见模方程 ...

  9. uva 211(dfs)

    211 - The Domino Effect Time limit: 3.000 seconds A standard set of Double Six dominoes contains 28 ...

随机推荐

  1. C++如何处理内联虚函数

    http://blog.csdn.net/hedylin/article/details/1775556 当一个函数是内联和虚函数时,会发生代码替换或使用虚表调用吗? 为了弄清楚内联和虚函数,让我们将 ...

  2. 【Linux安全】安全口令策略设置

    命令: vim /etc/login.defs 默认设置: # Password aging controls: # # PASS_MAX_DAYS Maximum number of days a ...

  3. Linux下删除大量文件

    主要参考了http://www.slashroot.in/which-is-the-fastest-method-to-delete-files-in-linux 首先建立50万个文件 ➜ test ...

  4. str.match(regex)与regex.exec(str)对比解析,从此不再晕

    match属于字符串的方法,exec属于正则表达式的方法.其中regex是否有g标志的区别经常搞不清,所以测试记录下. 1.str.match(regex) regex中无g标志 返回一个数组,arr ...

  5. 【POJ】1054 The Troublesome Frog

    题目是非常经典的搜索+剪枝.题意简言之就是,青蛙需要沿着直线踩着踏点通过田地,并且踏点需要至少为3.问哪条路径青蛙踩坏的作物最多.很好的一个条件是青蛙每次移动都是等间距的.题目需要注意将其排序. #i ...

  6. phpcms 2008 /preview.php SQL注入漏洞

    漏洞版本: phpcms 2008 漏洞描述: phpcms2008 是一款基于 PHP+Mysql 架构的网站内容管理系统,也是一个开源的 PHP 开发平台. phpcms 2008的preview ...

  7. zabbix中文配置指南(转)-服务器监控

    一.Zabbix简介 1.1 Zabbix简介 Zabbix是一个企业级的开源分布式监控解决方案,由一个国外的团队持续维护更新,软件可以自由下载使用,运作团队靠提供收费的技术支持赢利.官方网站:htt ...

  8. MVC系统过滤器、自定义过滤器

    一.系统过滤器使用说明 1.OutputCache过滤器 OutputCache过滤器用于缓存你查询结果,这样可以提高用户体验,也可以减少查询次数.它有以下属性: Duration:缓存的时间,以秒为 ...

  9. Android 实用代码七段(三)

    前言 终于又攒了一篇出来,本系列以实用为主,欢迎和我分享和推荐好用的代码段~~ 声明 欢迎转载,但请保留文章原始出处:)  博客园:http://www.cnblogs.com 农民伯伯: http: ...

  10. NSArray和NSMutableArray的copy和MutableCopy

    NSArray: //main.m #import <Foundation/Foundation.h> int main(int argc, const char * argv[]) { ...