分析:简单的莫比乌斯反演

f[i]为k=i时的答案数

然后就很简单了

#include<iostream>
#include<algorithm>
#include<set>
#include<vector>
#include<queue>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int N=1e5+;
int T,prime[N],mu[N],n,m;
bool vis[N];
void getmu()
{
mu[] = ;
int cnt = ;
for(int i=; i<=N-; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
mu[i] = -;
}
for(int j=; j<cnt&&i*prime[j]<=N-; j++)
{
vis[i*prime[j]] = ;
if(i%prime[j]) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = ;
break;
}
}
}
}
LL F(LL x){
LL y=m/x;
x=n/x;
y-=x;
return x*(x-)/+x+y*x;
} int main(){
getmu();
scanf("%d",&T);
int cas=;
while(T--){
int k;
scanf("%d%d%d%d%d",&n,&n,&m,&m,&k);
if(n>m)swap(n,m);
printf("Case %d: ",++cas);
if(!k){
printf("0\n");
continue;
}
LL ans=;
int mx=min(n,m);
for(int i=k;i<=mx;i+=k){
ans+=mu[i/k]*F(i);
}
printf("%I64d\n",ans);
}
return ;
}

HDU 1695 GCD 莫比乌斯反演的更多相关文章

  1. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  2. hdu 1695 GCD 莫比乌斯

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  4. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. HDU 1695 GCD (莫比乌斯反演模板)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. hdu 1695: GCD 【莫比乌斯反演】

    题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...

  8. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  9. ●HDU 1695 GCD

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...

随机推荐

  1. 在Mac OS X中使用VIM开发STM32(2)

    本文原创于http://www.cnblogs.com/humaoxiao,非法转载者请自重! 在我先前的博文⎣在Mac OS X中使用VIM开发STM32(1)⎤中,我们安装完成了MACVIM,这一 ...

  2. 排序算法FOUR:堆排序HeapSort

    /** *堆排序思路:O(nlogn) * 用最大堆,传入一个数组,先用数组建堆,维护堆的性质 * 再把第一个数与堆最后一个数调换,因为第一个数是最大的 * 把堆的大小减小一 * 再 在堆的大小上维护 ...

  3. shell中的重定向(2>&1)

    shell的输出可以分为标准输出和错误输出,2>&1中,2代表错误输出,1代表标准输出,&符号代表后面跟的是代号而不是文件. test.sh echo '我是标准输出' ls / ...

  4. easy-ui datagrid

    Easy-ui引用    <link href="css/EasyUI/themes/icon.css" rel="stylesheet" type=&q ...

  5. 关于javac编译时出现“非法字符:\65279”的解决方法

    一般用UE或记事本编辑过的UTF-8的文件头会加入BOM标识,该标识由3个char组成.在UTF-8的标准里该BOM标识是可有可无的,Sun 的javac 在编译带有BOM的UTF-8的格式的文件时会 ...

  6. MVC去掉传参时的验证:从客户端中检测到有潜在危险的Request.QueryString值

    解决方法:给Action添加属性[ValidateInput(false)]. 例: [ValidateInput(false)] public ActionResult Index(string o ...

  7. 通过I2C总线向EEPROM中写入数据,记录开机次数

    没买板子之前,用protues画过电路图,实现了通过i2c总线向EEPROM中写入和读出数据. 今天,在自己买的板子上面写关于i2c总线的程序,有个地方忘了延时,调程序的时候很蛋疼.下面说说我对I2c ...

  8. Android Learning:微信第三方登录

    这两天,解决了微信第三方授权登录的问题,作为一个新手,想想也是一把辛酸泪.我想着,就把我的遇到的坑给大家分享一下,避免新手遇到我这样的问题能够顺利避开. 步骤一 微信开发者平台 我开始的解决思路是,去 ...

  9. bat写的自动部署脚本

    windows7的机器上重启服务需要关闭UAC ::编译部署项目 echo off echo 1. GatewayAdaptor echo 2. LogicService echo 3. Messag ...

  10. 解析Android消息处理机制:Handler/Thread/Looper & MessageQueue

    解析Android消息处理机制 ——Handler/Thread/Looper & MessageQueue Keywords: Android Message HandlerThread L ...