分析:简单的莫比乌斯反演

f[i]为k=i时的答案数

然后就很简单了

#include<iostream>
#include<algorithm>
#include<set>
#include<vector>
#include<queue>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int N=1e5+;
int T,prime[N],mu[N],n,m;
bool vis[N];
void getmu()
{
mu[] = ;
int cnt = ;
for(int i=; i<=N-; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
mu[i] = -;
}
for(int j=; j<cnt&&i*prime[j]<=N-; j++)
{
vis[i*prime[j]] = ;
if(i%prime[j]) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = ;
break;
}
}
}
}
LL F(LL x){
LL y=m/x;
x=n/x;
y-=x;
return x*(x-)/+x+y*x;
} int main(){
getmu();
scanf("%d",&T);
int cas=;
while(T--){
int k;
scanf("%d%d%d%d%d",&n,&n,&m,&m,&k);
if(n>m)swap(n,m);
printf("Case %d: ",++cas);
if(!k){
printf("0\n");
continue;
}
LL ans=;
int mx=min(n,m);
for(int i=k;i<=mx;i+=k){
ans+=mu[i/k]*F(i);
}
printf("%I64d\n",ans);
}
return ;
}

HDU 1695 GCD 莫比乌斯反演的更多相关文章

  1. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  2. hdu 1695 GCD 莫比乌斯

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  4. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. HDU 1695 GCD (莫比乌斯反演模板)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. hdu 1695: GCD 【莫比乌斯反演】

    题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...

  8. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  9. ●HDU 1695 GCD

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...

随机推荐

  1. OpenCV2学习笔记04:图像的读取与显示

    1. 图像读取:imread() Mat imread( ) 参数介绍: filename: 待加载的文件名称. flags: 此标志用来指定被加载图像的颜色类型(color type).这个标志的取 ...

  2. Java Web开发之Servlet、JSP基础

    有好多年不搞Java Web开发了,这几天正好国庆放假,放松之余也有兴趣回头看看Java Web开发技术的基础. 我们都知道,Servlet是Java Web开发的重要基础,但是由于Servlet开发 ...

  3. 为什么要有binary-to-text encoding?

    在wikipedia上看MIME的介绍的时候,有一节是关于Content-Transfer-Encoding的,里面提到了binary-to-text encoding,我就想,既然计算机中的信息使用 ...

  4. yii YII小部件 创建登录表单表单 Login表单

    YII框架必须遵循其表单的创建方法 登录模型错做与数据库操作模型是一致的,不同的是不跟数据库交互 ,用的是小部件,在创建表单之前,要在用户控制模块完成以下代码 protected --models - ...

  5. UDP TCP应用场景

    作者:陈硕链接:https://www.zhihu.com/question/20060141/answer/26735814来源:知乎著作权归作者所有,转载请联系作者获得授权. UDP 的使用范围很 ...

  6. WPF读书笔记 x名称空间详解(第二天)

    每天看一点,每天进步一点. x名称空间映射的是http://schemas.microsoft.com/winfx/2006/xaml,它包含的类均与解析XAML语言关,亦可称为"XAML名 ...

  7. javascript高级编程笔记01(基本概念)

    1.在html中使用JavaScript 1.  <script> 元素 <script>定义了下列6个属性: async:可选,异步下载外部脚本文件. charset:可选, ...

  8. OpenGL ES 3.0 基础知识

    首先要了解OpenGL的图形管线有哪些内容,再分别去了解其中的相关的关系: 管线分别包括了顶点缓冲区/数组对象,定点着色器,纹理,片段着色器,变换反馈,图元装配,光栅化,逐片段操作,帧缓冲区.其中顶点 ...

  9. 重启Finder

    解决Finder卡死的问题! 方法一:在Dock 图标上操作 按住 Option 键并右键点按 Finder 图标,选择菜单中的“重新开启” 方法二:在终端里操作 打开终端(应用程序 – 实用工具), ...

  10. NSBundle的使用,注意mainBundle和Custom Bundle的区别

    1.[NSBundle mainBundle],文件夹其实是Group,如左侧的树形文件管理器 Build之后,文件直接就复制到了根目录下,于是读取的方法,应该是这样: NSString *earth ...