Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的区别
引自http://blog.csdn.net/xianlingmao/article/details/7712217
Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting
这些术语,我经常搞混淆,现在把它们放在一起,以示区别。(部分文字来自网络,由于是之前记的笔记,忘记来源了,特此向作者抱歉)
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法。其核心思想和基本步骤如下:
(1) 采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。
(2) 根据抽出的样本计算给定的统计量T。
(3) 重复上述N次(一般大于1000),得到N个统计量T。
(4) 计算上述N个统计量T的样本方差,得到统计量的方差。
应该说Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好。通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸。
Jackknife: 和上面要介绍的Bootstrap功能类似,只是有一点细节不一样,即每次从样本中抽样时候只是去除几个样本(而不是抽样),就像小刀一样割去一部分。
(pku, sewm,shinningmonster.)
============================================================================================================================
下列方法都是上述Bootstraping思想的一种应用。
bagging:bootstrap aggregating的缩写。让该学习算法训练多轮,每轮的训练集由从初始的训练集中随机取出的n个训练样本组成,某个初始训练样本在某轮训练集中可以出现多次或根本不出现,训练之后可得到一个预测函数序列h_1,⋯ ⋯h_n ,最终的预测函数H对分类问题采用投票方式,对回归问题采用简单平均方法对新示例进行判别。
Boosting思想的一种改进型AdaBoost方法在邮件过滤、文本分类方面都有很好的性能。
gradient boosting(又叫Mart, Treenet):Boosting是一种思想,Gradient Boosting是一种实现Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向。损失函数(loss function)描述的是模型的不靠谱程度,损失函数越大,则说明模型越容易出错。如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度(Gradient)的方向上下降。
Rand forest: 随机森林,顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。 在建立每一棵决策树的过程中,有两点需要注意 - 采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M个feature中,选择m个(m << M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一个分类。一般很多的决策树算法都一个重要的步骤 - 剪枝,但是这里不这样干,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。 按这种算法得到的随机森林中的每一棵都是很弱的,但是大家组合起来就很厉害了。可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们从M个feature中选择m让每一棵决策树进行学习),这样在随机森林中就有了很多个精通不同领域的专家,对一个新的问题(新的输入数据),可以用不同的角度去看待它,最终由各个专家,投票得到结果。
Rand forest与bagging的区别:1). Rand forest是选与输入样本的数目相同多的次数(可能一个样本会被选取多次,同时也会造成一些样本不会被选取到),而bagging一般选取比输入样本的数目少的样本;2). bagging是用全部特征来得到分类器,而rand forest是需要从全部特征中选取其中的一部分来训练得到分类器; 一般Rand forest效果比bagging效果好!
Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的区别的更多相关文章
- 【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting
Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting 这些术语,我经常搞混淆, ...
- (转)关于bootstrap, boosting, bagging,Rand forest
转自:https://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ...
- A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning
A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...
- 集成学习之Boosting —— Gradient Boosting原理
集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...
- Gradient Boosting算法简介
最近项目中涉及基于Gradient Boosting Regression 算法拟合时间序列曲线的内容,利用python机器学习包 scikit-learn 中的GradientBoostingReg ...
- CatBoost使用GPU实现决策树的快速梯度提升CatBoost Enables Fast Gradient Boosting on Decision Trees Using GPUs
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...
- Jackknife,Bootstrap, Bagging, Boosting, AdaBoost, RandomForest 和 Gradient Boosting的区别
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统 ...
- How to Configure the Gradient Boosting Algorithm
How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...
- Gradient Boosting Decision Tree学习
Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...
随机推荐
- [Java] Collections - 源代码学习笔记
Collection interface 集合接口 1. 在 Collections 体系中,接口 Collection 是根接口 2. 是指一组对象,这些对象被称为 Collection 的元素. ...
- UIAlertController 的使用——NS_CLASS_AVAILABLE_IOS(8_0)
UIAlertView 随着苹果上次iOS 5的发布,对话框视图样式出现在了我们面前,直到现在它都没有发生过很大的变化.下面的代码片段展示了如何初始化和显示一个带有“取消”和“好的”按钮的对话框视图. ...
- 从无到有开发连麦直播技术<转>
转贴地址:http://blog.csdn.net/heisedelangzi/article/details/52400333 从无到有开发连麦直播技术点整理-AnyRTC 直播关键字 采集.前处理 ...
- YKCW6-BPFPF-BT8C9-7DCTH-QXGWCYQ7PR-QTHDM-HCBCV-9GKGG-TB2TM
YKCW6-BPFPF-BT8C9-7DCTH-QXGWCYQ7PR-QTHDM-HCBCV-9GKGG-TB2TM
- Haskell之Yesod开发–边踩坑边开发(2)
今天继续上一节的开发 今天我们须要详细的开发一个图书馆站点,分为下面几个页面 / HomeR GET 主页 /login LoginR GET 用户登录页面 /library LibraryR GET ...
- C#3.0 语言基础扩充
隐含类型局部变量 var i = 5; var h = 13.4; var s = "C Sharp"; var intArr = new[] {1,2,3 }; var a = ...
- linux配置时间同步
目标环境,5台linux centos 6.3, 一台作为NTPD服务与外部公共NTP服务同步时间,同时作为内网的NTPD服务器,其他机器与这台服务做时间同步. 服务器IP 角色 说明 同步方式 ...
- 关于centos6.5系统安装FTP服务和配置的方法
一般在配置服务器的时候,涉及到代码上传,通常都要用到FTP方式. 1.先查看系统是否安装vsftpd: rpm -qa | grep vsftpd 如果出现vsftpd-2.2.2-14......字 ...
- AS 自动生成选择器 SelectorChapek
简介 https://github.com/inmite/android-selector-chapek 设计师给我们提供好了各种资源,每个按钮都要写一个selector是不是很麻烦? 这么这个插件就 ...
- (转)background-position—CSS设置背景图片的位置
background-position :在 CSS 中通过 background-position 属性可以调整背景图片的位置.因为在默认情况下背景图片都是从设置了 background-posit ...