枚举最终的获得所有饼干的人$i$(以下简称"获胜者"),对于$i$获胜的情况,令其贡献为游戏轮数,否则其贡献为0,记$F_{i}$为期望贡献(即所有情况概率*贡献之和),答案即为$\sum_{i=1}^{n}F_{i}$

但此时的$F_{i}$比较复杂,其不仅取决于第$i$个人的饼干数量,还取决于别人的饼干数量,因为如果有一个人先获得了所有饼干,虽然游戏还可以继续,但$i$并不是获胜者

虽然如此,我们还是先算出在不管其他人的情况下(即另一个人获得所有饼干游戏并不结束),有$i$个饼干的人获胜的期望轮数$G_{i}$,则有$G_{a_{i}}=\sum_{j=1}^{n}F_{j}+(1-p_{i})G_{0}$

关于这个式子,$\sum_{j=1}^{n}g_{j}$即为游戏的期望轮数,那么这么多轮后,有$1-p_{i}$的概率并不是$i$获胜,而对于$G_{a_{i}}$来说此时还没有结束,而$i$必然只有0张牌,即还需要$G_{0}$步

将所有$i$累加,即$\sum_{i=1}^{n}G_{a_{i}}=n\sum_{j=1}^{n}F_{j}+(n-1)G_{0}$

由此,可以得到$\sum_{j=1}^{n}F_{j}=\frac{\sum_{i=1}^{n}G_{a_{i}}-(n-1)G_{0}}{n}$,下面考虑如何求出$G_{i}$,显然有转移
$$
\begin{cases}G_{S}=0\\G_{0}=\frac{n-2}{n-1}G_{0}+\frac{1}{n-1}G_{1}+1\\G_{i}=\frac{i}{S}G_{i-1}+\frac{S-i}{S}(\frac{1}{n-1}G_{i+1}+\frac{n-2}{n-1}G_{i})+1&(1\le i<S)\end{cases}
$$
将其变形,即有
$$
\begin{cases}G_{S}=0\\G_{0}=G_{1}+(n-1)\\\frac{S-i}{n-1}(G_{i}-G_{i+1})=i(G_{i-1}-G_{i})+S&(1\le i<S)\end{cases}
$$
记$g_{i}=G_{i}-G_{i+1}$,代入即
$$
\begin{cases}g_{0}=n-1\\g_{i}=\frac{n-1}{S-i}(i\cdot g_{i-1}+S)&(1\le i<S)\end{cases}
$$
由此即可算出$g_{i}$,再通过$G_{i}=\sum_{j=i}^{S-1}g_{j}$也即可算出$G_{i}$,进而也即可求出答案

总复杂度为$o(S)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 300005
4 #define mod 998244353
5 #define ll long long
6 int n,m,ans,inv[N],a[N],g[N],G[N];
7 int main(){
8 inv[0]=inv[1]=1;
9 for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
10 scanf("%d",&n);
11 for(int i=1;i<=n;i++){
12 scanf("%d",&a[i]);
13 m+=a[i];
14 }
15 g[0]=n-1;
16 for(int i=1;i<m;i++){
17 int s=(ll)(n-1)*inv[m-i]%mod;
18 g[i]=((ll)i*g[i-1]+m)%mod*s%mod;
19 }
20 for(int i=m-1;i>=0;i--)G[i]=(G[i+1]+g[i])%mod;
21 ans=mod-(ll)(n-1)*G[0]%mod;
22 for(int i=1;i<=n;i++)ans=(ans+G[a[i]])%mod;
23 ans=(ll)ans*inv[n]%mod;
24 printf("%d",ans);
25 }

[cf1349D]Slime and Biscuits的更多相关文章

  1. Solution -「CF 1349D」Slime and Biscuits

    \(\mathcal{Description}\)   Link.   有 \(n\) 堆饼干,一开始第 \(i\) 堆有 \(a_i\) 块.每次操作从所有饼干中随机一块,将其随机丢到另外一堆.求所 ...

  2. [题解] Codeforces 1349 D Slime and Biscuits 概率,推式子,DP,解方程

    题目 神题.很多东西都不知道是怎么凑出来的,随意设置几个变量,之间就产生了密切的关系.下次碰到这种题应该还是不会做罢. 令\(E_x\)为最后结束时所有的饼干都在第x个人手中的概率*时间的和.\(an ...

  3. 更新lispbox中的ccl和slime版本

    首先C-x C-f然后输入~,找到.emacs文件,根据slime官方文档说明的添加如下代码到文件末尾,重启一下emacs,slime就编译好了,然后这段代码就可以删除.否则每次启动emacs就算不用 ...

  4. Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) A. Slime Combining 水题

    A. Slime Combining 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2768 Description Your frien ...

  5. 编写php拓展实例--slime项目(用户登录会话类)

      最近公司换了yaf框架,突然对用c实现php拓展感兴趣了,如果一个功能已经很稳定很成熟而且用的地方很多,那么我们就可以尝试用拓展实现(不一定每种情况都可以写成拓展),写成拓展后就不用每次用都包含一 ...

  6. Windows下安装Emacs+Sbcl+Slime

    前言 其实网上已经有很多类似的文章了,我也是按照上面的来做.在做的过程中会遇到几个很坑的地方,我自己也是折腾了好久才弄好.所以现在写出来希望能对大家有所帮助. 正文 下载和安装Emacs http:/ ...

  7. slime+sbcl for common lisp

    sudo apt-get install slime audo apt-get install sbcl ;;sbcl+slime for common lisp ;;sudo apt-get ins ...

  8. Common Lisp学习笔记(0):从SLIME开始 | 优哉·幽斋

    Common Lisp学习笔记(0):从SLIME开始 | 优哉·幽斋 Common Lisp学习笔记(0):从SLIME开始

  9. 在 Emacs 中如何退出 Slime Mode

    1.在 Slime 的 Buffer 中按逗号“,”: 2.在 Command 后输入:sayoonara 3.回车,确认. ================ 退出 SBCL 输入:(sb-ext:q ...

随机推荐

  1. 反调试——7——CRC检测

    反调试--7--CRC检测 CRC32: CRC的全称是循环冗余校验,作用是为了检测数据的完整性. CRC32的检测原理: 程序被编译后,代码段是固定的,因为已经被写死了. 我们在调试程序的时候,打断 ...

  2. Linux Bash命令杂记(cut sort uniq wc tee)

    Linux Bash命令杂记(cut sort uniq wc tee) 数据流重定向 标准输入(stdin):代码为0,使用<或<<: 标准输出(stdout):代码为1,使用&g ...

  3. 2021年1月-第02阶段-前端基础-HTML+CSS进阶-VS Code 软件

    软件安装 VSCode软件 能够安装 VS Code 能够熟练使用 VS Code 软件 能够安装 VS Code 最常用的插件 1. VS Code简介 1.1 VS Code 简介 Visual ...

  4. 经典论文系列 | 缩小Anchor-based和Anchor-free检测之间差距的方法:自适应训练样本选择

    ​  前言  本文介绍一篇CVPR2020的论文,它在paperswithcode上获得了16887星,谷歌学术上有261的引用次数. 论文主要介绍了目标检测现有的研究进展.anchor-based和 ...

  5. BUAA2020软工作业(五)——软件案例分析

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 软件案例分析作业 我在这个课程的目标是 进一步提高自己的编码能力,工程能力 这个作业在哪个具体方面 ...

  6. 期望dp好题选做

    前言: 最近连考两场期望dp的题目,sir说十分板子的题目我竟然一点也不会,而且讲过以后也觉得很不可改.于是开个坑. 1.晚测10 T2 大佬(kat) 明明有\(O(mlog)\)的写法,但是\(m ...

  7. 前端大牛带你了解JavaScript 函数式编程

    前言 函数式编程在前端已经成为了一个非常热门的话题.在最近几年里,我们看到非常多的应用程序代码库里大量使用着函数式编程思想. 本文将略去那些晦涩难懂的概念介绍,重点展示在 JavaScript 中到底 ...

  8. ip_local_port_range 和 ip_local_reserved_ports

    问题:启动应用程序时,发现网络端口被占用,原因是什么?如何避免? 原因:Linux 系统设置了随机使用的端口范围  echo "40000  60000" > /proc/. ...

  9. 你真的了解电子邮件系统的组成和结构吗?(SMTP、POP3、IMAP、MIME……)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105896201 学习课程:<2019王道考研计算机网络> 学习目的 ...

  10. 【BZOJ-2199】奶牛议会

    链接: BZOJ-2199 题意: 给出 \(n(1\leq n\leq 1000)\) 个点,\(m(1\leq m\leq 4000)\) 个形如:"点 \(a\) 取 \(ca\) 或 ...